Citation: | WANG Guilin, HE Chenhao, OUYANG Xiaotian, ZHAI Jun, CHEN Xiangyu. Response Law of Subway Platform and Surrounding Rock under Solid Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874 |
[1] |
城市轨道交通2017年度统计和分析报告 [J]. 城市轨道交通, 2018(4): 6−25.
Statistics and analysis report of urban rail transit in 2017 [J]. China Metros, 2018(4): 6−25.
|
[2] |
王勇, 王德荣, 陈灿寿, 等. 某地铁区间隧道内爆炸效应的数值模拟 [J]. 防护工程, 2006, 28(6): 55–58.
WANG Y, WANG D R, CHEN C S, et al. Numerical simulation on interior blasting effect in the section of tunnel in some subway [J]. Protective Engineering, 2006, 28(6): 55–58.
|
[3] |
CHOI S, WANG J, MUNFAKH G, et al. 3D nonlinear blast model analysis for underground structures [C]//GeoCongress 2006. Atlanta, Georgia, USA: ASCE, 2006.
|
[4] |
ZHANG X X, CHENG J W, SHI C L, et al. Numerical simulation studies on effects of explosion impact load on underground mine seal [J]. Mining, Metallurgy & Exploration, 2020, 37(2): 665–680. doi: 10.1007/s42461-019-00143-2
|
[5] |
柴永生, 王月桂, 章毅. 地铁口部爆炸冲击波传播规律与超压荷载研究 [J]. 防护工程, 2019, 41(1): 42–46.
CHAI Y S, WANG Y G, ZHANG Y. Study on propagation of blast wave and the overpressure load subjected to metro entrance explosion [J]. Protective Engineering, 2019, 41(1): 42–46.
|
[6] |
王桂林, 欧阳啸天, 翟俊, 等. 浅埋三舱管廊甲烷爆炸的地面响应规律 [J]. 高压物理学报, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
WANG G L, OUYANG X T, ZHAI J, et al. Ground response law of methane explosion in shallow buried three-cabin pipe gallery [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
|
[7] |
张雄, 廉艳平, 刘岩, 等. 物质点法 [M]. 北京: 清华大学出版社, 2013: 31−32.
ZHANG X, LIAN Y P, LIU Y, et al. Material point method [M]. Beijing: Tsinghua University Press, 2013: 31−32.
|
[8] |
陈卫东, 杨文淼, 张帆. 基于物质点法的水下爆炸冲击波数值模拟 [J]. 高压物理学报, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004
CHEN W D, YANG W M, ZHANG F. Material point method for numerical simulation of underwater explosion blast wave [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004
|
[9] |
王宇新, 陈震, 张洪武, 等. 多层抗爆结构冲击响应无网格MPM法分析 [J]. 工程力学, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032
WANG Y X, CHEN Z, ZHANG H W, et al. Response of multi-layered structure due to impact load using material point method [J]. Engineering Mechanics, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032
|
[10] |
张芮瑜, 孙玉进, 宋二祥. 强夯的物质点法模拟及其能量转化规律分析 [J]. 岩土工程学报, 2019, 41(7): 1208–1216. doi: 10.11779/CJGE201907004
ZHANG R Y, SUN Y J, SONG E X. Simulation of dynamic compaction using material point method and analysis of its energy conversion law [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1208–1216. doi: 10.11779/CJGE201907004
|
[11] |
董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟 [J]. 海洋工程, 2019, 37(5): 141–147. doi: 10.16483/j.issn.1005-9865.2019.05.016
DONG Y K, MA J J, WANG D, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141–147. doi: 10.16483/j.issn.1005-9865.2019.05.016
|
[12] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. doi: 10.1016/0734-743X(92)90282-X
|
[13] |
李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3): 488–494. doi: 10.3969/j.issn.1000-1093.2020.03.009
LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. doi: 10.3969/j.issn.1000-1093.2020.03.009
|
[14] |
李志鹏. 瓦斯爆炸作用下隧道衬砌致损机理及修复技术研究 [D]. 北京: 北京科技大学, 2019.
LI Z P. Study on damage mechanism and repair technology of tunnel lining subject to gas explosion [D]. Beijing: University of Science and Technology, 2019.
|
[15] |
涂国勇, 王海锋, 禄晓飞, 等. 整体爆破弹头爆炸当量定量评价研究 [J]. 现代防御技术, 2020, 48(2): 30–34. doi: 10.3969/j.issn.1009-086x.2020.02.005
TU G Y, WANG H F, LU X F, et al. Explosion equivalent quantitative evaluation of global blowup warhead [J]. Modern Defense Technology, 2020, 48(2): 30–34. doi: 10.3969/j.issn.1009-086x.2020.02.005
|
[16] |
张程娇. 炸药爆轰产物参数的特征线差分反演方法研究 [D]. 大连: 大连理工大学, 2016.
ZHANG C J. Research of inversion method of detonation products physical parameters based on modified method of characteristics [D]. Dalian: Dalian University of Technology, 2016.
|
[17] |
闫秋实, 刘晶波, 伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究 [J]. 工程力学, 2012, 29(2): 81–88.
YAN Q S, LIU J B, WU J. Estimation of casualty areas in subway station subjected to terrorist bomb [J]. Engineering Mechanics, 2012, 29(2): 81–88.
|
[18] |
HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Scientific Publishing Company, 1979: 178−181.
|
[19] |
BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids, 1959, 2(2): 217. doi: 10.1063/1.1705911
|
[20] |
SADOVSKYI M A. Mechanical action of air shock waves of explosion based on experimental data [M]. Moscow: Izd Akad Nauk SSSR, 1952.
|
[21] |
WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. doi: 10.1016/j.ijimpeng.2004.03.002
|
[22] |
师光达. 化工园区危险性评价研究 [D]. 沈阳: 沈阳理工大学, 2020.
SHI G D. Study on risk assessment of chemical industry park [D]. Shenyang: Shenyang Ligong University, 2020.
|
[23] |
王新建. 爆炸中缺口效应及其防护研究 [J]. 中国人民公安大学学报(自然科学版), 2008, 14(3): 88–90.
WANG X J. Study on explosion notch effect and its protecton [J]. Journal of Chinese People’s Public Security University (Science and Technology), 2008, 14(3): 88–90.
|
[1] | LIU Zhiyue, ZHAI Junzhao. Numerical Simulation on the Performance of Shaped Charge with Explosively Welded Aluminum Copper Liner[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064107. doi: 10.11858/gywlxb.20190728 |
[2] | WANG Chang-Li, ZHOU Gang, MA Kun, CHEN Chun-Lin, ZHAO Nan, FENG Na. Shockwave Characteristics of Shaped Charge Exploded Underwater[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 453-461. doi: 10.11858/gywlxb.2017.04.014 |
[3] | YANG Rui, WANG Jin-Xiang, ZHOU Nan, PENG Chu-Cai, XIE Jun. Numerical Simulation of Microscopic Dynamic Behavior in the Copper under Explosively Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 461-467. doi: 10.11858/gywlxb.2013.03.022 |
[4] | XU Song-Lin, LIU Yong-Gui, WANG Dao-Rong, TAN Zi-Han, Zheng Hang. Dynamic Responses of Alumina Microvoid Ceramics with High Porosity under Combined Pressure and Shear Impact Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 662-670. doi: 10.11858/gywlxb.2013.05.002 |
[5] | REN Hui-Lan, GUO Ting-Ting, NING Jian-Guo. Failure Characteristics of Alumina Penetrated by Shaped Charge Jet[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 526-532. doi: 10.11858/gywlxb.2011.06.008 |
[6] | WANG Li-Li, ZHU Jue, LAI Hua-Wei. Understanding and Interpreting of the Measured Wave Signals in Impact Dynamics Studies[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 279-285 . doi: 10.11858/gywlxb.2010.04.007 |
[7] | WANG Tong-Quan, ZHANG Ruo-Qi, TANG Wen-Hui, XIAO Ya-Bin. Shock Wave Induced by High-Energy Proton Beams[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 117-121 . doi: 10.11858/gywlxb.2003.02.007 |
[8] | LIAO Qi-Long, YANG Shi-Yuan, CAI Ling-Cang, ZHOU Da-Li, YIN Guang-Fu, ZHENG Chang-Qiong. Synthesis of Hydroxyapatite Powder by Shock Wave Treatment Method[J]. Chinese Journal of High Pressure Physics, 2002, 16(4): 249-253 . doi: 10.11858/gywlxb.2002.04.002 |
[9] | YANG Shi-Yuan, JIN Xiao-Gang, DONG Yu-Bin. Grain Size Refinement and Homogenization of Multi-component Powders by Shock Treatment[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 48-53 . doi: 10.11858/gywlxb.2001.01.007 |
[10] | TANG Jing-You, WU Shao-Zhen, WANG Fan-Hou, GU Yan, DONG Qing-Dong. The Effect of Shock-Heated Gaseous Helium and Argon on Pin Shortening[J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 285-290 . doi: 10.11858/gywlxb.2000.04.009 |
[11] | LIU Jian-Jun, YU Ying-Chun, LI Ying-Jun, HE Hong-Liang, TAN Hua, XU Kang. Shock Activation of Titanium Oxide and Its Photocatalytic Activity[J]. Chinese Journal of High Pressure Physics, 1999, 13(2): 138-142 . doi: 10.11858/gywlxb.1999.02.010 |
[12] | YUE Zong-Wu, TANG Wen-Hui. Free-Lagrangian Method for Simulating Shock Wave Propagation[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 228-232 . doi: 10.11858/gywlxb.1998.03.011 |
[13] | ZHANG Guan-Ren. Shock Wave and Condensation of Fractal Clusters[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 241-244 . doi: 10.11858/gywlxb.1997.04.001 |
[14] | TAN Hua, HAN Jun-Wan, HE Hong-Liang, WANG Xiao-Jiang. Morphology and Thermal Stability of Shock Synthesized wBN Powders[J]. Chinese Journal of High Pressure Physics, 1995, 9(1): 53-58 . doi: 10.11858/gywlxb.1995.01.009 |
[15] | JIN Xiao-Gang, WANG Hong. The Microstructure of Shock Wave-Processed 45 Steel[J]. Chinese Journal of High Pressure Physics, 1993, 7(4): 254-259 . doi: 10.11858/gywlxb.1993.04.003 |
[16] | ZHANG Guan-Ren. The Polarizability of Material under Shock Loading[J]. Chinese Journal of High Pressure Physics, 1990, 4(3): 161-166 . doi: 10.11858/gywlxb.1990.03.001 |
[17] | TANG Wen-Hui, ZHANG Ruo-Qi, CHEN Xue-Fang. Experimental Studies on the Attenuation of Shock Waves in LY12-M Aluminum[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 218-226 . doi: 10.11858/gywlxb.1988.03.004 |
[18] | GU Yuan, WANG Yong-Gang, MAO Chu-Sheng, NI Yuan-Long, WU Feng-Chun, MA Min-Xun. Preliminary Experiments on the Equation of State of Materials at High-Pressure Produced by Laser Driven Shock Waves[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011 |
[19] | YU Wan-Rui, LIU Ge-San. Molecular Dynamic Investigation of Shock Waves in the Solid[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 73-78 . doi: 10.11858/gywlxb.1988.01.010 |
[20] | LI Mao-Sheng. Lateral Unstability of a Jet Produced by Shaped Charge[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 327-334 . doi: 10.11858/gywlxb.1988.04.006 |