Processing math: 100%
JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Channel Induced Electro-Mechanical Breakdown Model for Porous PZT95/5 Ceramics in Quasi-Static Electric Fields[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 680-685. doi: 10.11858/gywlxb.2014.06.006
Citation: LI Bing, DING Yang, WANG Lin, WENG Zuqian, YANG Wenge, JI Cheng, YANG Ke, MAO Ho-kwang. Metallization of Hydrogen under Static High Pressure and the Inelastic X-ray Scattering Technique[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 050101. doi: 10.11858/gywlxb.20210864

Metallization of Hydrogen under Static High Pressure and the Inelastic X-ray Scattering Technique

doi: 10.11858/gywlxb.20210864
  • Received Date: 11 Aug 2021
  • Rev Recd Date: 06 Sep 2021
  • The research on hydrogen under high pressure has always been a hot topic both in experimental and theoretical physics, the enthusiasm is rooted from the pursuit of its pressure-induced metallic state – metallic hydrogen. The pressure induced metallization of hydrogen is an electric phase transition from a wide gap insulator to a small gap semiconductor, and finally to a closed gap metal. However, due to the limitation of high pressure experiment conditions, the bandgap and electronic structure of the wide-gap hydrogen has never been directly observed. In this paper we will discuss the technical challenge and the development of experiment research on hydrogen metallization, meanwhile we will present our experiment results and the technical advance on the direct measurement of the wide-gap hydrogen by using inelastic X-ray scattering technique, and finally the outlook.

     

  • 铁电陶瓷(Pb(Zr, Ti)O3)PZT95/5是指Zr和Ti的物质的量之比约95/5、铁电相(Ferroelectric Phase, FE)和反铁电相(Anti-Ferroelectric Phase, AFE)共存的一类铁电功能性材料。经过电极化的PZT95/5铁电陶瓷在外部高压机械加载的作用下, 能够发生从铁电相到反铁电相的转变, 释放束缚电荷并形成高功率的瞬态电源, 因此PZT95/5铁电陶瓷广泛用于脉冲能源装置中[1-3]。近些年, 人们为了提高PZT95/5铁电陶瓷用作爆炸铁电体电源时的放电效率, 在材料制备过程中加入造孔剂, 从而制备出低密度的多孔PZT95/5陶瓷材料, 具有较优的电学和力学性能[4-9]

    与致密材料相比, 多孔PZT95/5铁电陶瓷材料的抗冲击能力增强, 铁电-反铁电冲击相变压力降低, 从而其放电效率得到提高[10-11]; 然而, 由于放电过程中所处的强电场, 及自身内部的孔隙、缺陷等因素影响, 多孔PZT95/5铁电陶瓷比致密材料更易产生电击穿失效现象, 从而影响其放电效率, 甚至导致电源失效。多孔PZT95/5铁电陶瓷在强电场作用下的电击穿现象是一个非常复杂的瞬态过程, 贯穿于材料内部, 往往难以观察。同时, 影响铁电陶瓷材料电击穿失效的临界电场强度的因素很多, 如制备工艺、微观结构、点缺陷、气孔、密度等[12-14]。目前, 关于多孔铁电陶瓷的研究主要集中在采用不同制备工艺提高材料的抗击穿能力上。Shin等人[14]在研究BaTiO3陶瓷的电击穿强度时发现, 随着烧结温度的提高, 孔洞的尺寸增大, 材料的电击穿强度降低; 杨洪[15]利用传统固相法、非均相沉淀法、热压和陶瓷复合技术等方法, 制备出不同微观结构和性能的PZT95/5型铁电陶瓷, 其中利用热压烧结方式制备的PZT95/5陶瓷抗击穿强度最高。也有部分工作对多孔铁电陶瓷材料的击穿特性进行了描述。Geis等人[16]发现, PZT53/47铁电陶瓷的抗击穿能力随材料孔隙率的增加而线性降低; 曾涛[17]通过实验测试不同造孔剂、不同孔隙率铁电陶瓷材料的击穿电场强度, 给出了击穿场强随孔隙率变化的规律, 并采用Gerson等人提出的串联孔洞模型[18]解释孔隙率对多孔PZT95/5铁电陶瓷的抗电击穿强度的影响, 指出微裂纹和不规则的本征孔洞是容易发生电击穿的弱点处。近年来, 基于实验观测的固体介电质材料的电击穿通道等微观图像, 一些学者从电击穿机制(如热击穿、电-机械击穿、弱点击穿、本征击穿等)入手, 研究电击穿失效的机理[19-20], 给出了定性解释[21]。但由于材料内部缺陷的随机性及多样性, 相关理论和模型对临界电场的预测往往与实验结果不符, 甚至相差几个数量级, 定量预测模型的研究也少有开展。

    基于固体电介质的通道电-机械击穿机理, 及铁电陶瓷孔洞局部放电理论, 本研究拟建立一种多孔铁电陶瓷导电通道诱导的电击穿模型, 通过分析铁电陶瓷材料的通道裂纹扩展所需克服的总电-机械能量, 预测静电场中多孔铁电陶瓷材料的临界击穿电场强度, 并与材料孔隙率、介电常数、微观机制通道特征半径等建立关联。

    考虑一静电场作用下的多孔铁电陶瓷材料, 假设击穿通道从材料内部的孔洞或裂纹、缺陷处开始, 端部呈半径为r的半球形。记通道扩展方向的长度为dl, 体积为dV, 则导电通道内部的静电能Wes可表示为

    Wes=12DEdV=12DEπr2dl
    (1)

    式中:E为导电通道端部孔洞处的电场强度; D为电位移矢量, 且有D=ε0εrE, ε0εr分别是真空介电常数和铁电陶瓷材料的相对介电常数。

    一般而言, 由于材料内部存在裂纹, 使电场非均匀分布, 因此通道裂纹内部的电场与外加电场的分布不同。在外加电场的作用下, 通道内的气体被电离为导体, 导致孔洞表面产生感应电荷, 同时孔洞内也存在空间自由电荷。这两部分电荷使孔洞周围的电场发生变化, 从而引起孔洞局部放电[22-23]。为了分析方便, 不妨假设通道内的电场E均匀分布, 且与外电场E0存在如下关系

    E=hE0
    (2)

    式中:h为电场局部分布因子。它与铁电陶瓷材料的介电常数及通道形状有关, 可以表示为[24]

    h=kεr1+(k1)εr
    (3)

    式中:k为无量纲常数, 与通道尺寸和取向有关。考虑一般情形, 可将通道看作椭球形状(a, b分别为长、短半轴), 当a/b≪1时, 表示一沿电场方向的微裂纹通道, 即

    k={[(ba)21]32(ba)2{(ba)21arctan[(ba)21]}a/b<13a/b=1
    (4)

    进一步, 通道裂纹的电-机械能可表示为

    Wem=12σγdV=12σγπr2dl
    (5)

    式中:σ=ε0εrE2/2, 为静电场引起的Maxwell应力; γ=σ/Y为应变, Y为杨氏模量。结合(1)式~(5)式, 通道处的总能量可表示为静电能与电-机械能之和, 即

    Wes+Wem=12DEπr2dl+12σγπr2dl=(12ε0εrh2E20+ε20ε2rh48YE40)πr2dl
    (6)

    固体介质的通道电-机械击穿模型认为, 材料内部存在通道裂纹, 在外电场作用下, 导电通道裂纹的能量为静电能和电-机械能(弹性能)之和。随着外加电场的增强, 通道裂纹开裂、蔓延扩展, 此时需要克服通道的表面能Wfs。当外部静电能和电-机械能高于通道裂纹的表面能时, 电介质被击穿破坏[25-26], 相应的表面能表示如下

    Wfs=2Gπr dl
    (7)

    式中:G为铁电陶瓷材料的机械能释放率。铁电陶瓷的临界机械能释放率Gc一般为10~20 J/m[27]

    导电通道扩展以致铁电陶瓷材料击穿破坏的临界准则为

    Wes+WemWfs
    (8)

    结合(6)式、(7)式, 并求解(8)式, 不难得到电击穿的临界电场强度Ec

    Ec=(11k)[2rε0εr(r2Y2+4GcrYrY)]12
    (9)

    为了表征多孔材料的相关电性参数和力学参数, 以致密PZT95/5铁电陶瓷的相关参数为基准, 采用多孔材料性能表征方法[28-29], 获得多孔PZT95/5陶瓷的相对介电常数及等效杨氏模量

    εr=ε0r[1(pks)23]
    (10)
    Y=Y0(1αp)n
    (11)

    式中: 分别对应于致密PZT95/5铁电陶瓷的相对介电常数和杨氏模量; p为多孔材料的孔隙率; ks为孔的形状因子, 对球形孔一般取ks=1, 不规则形状孔取ks=0.5;α, n为材料常数。对于一些多孔PZT95/5铁电陶瓷, 已有实验表明, 等效杨氏模量与孔隙率近似呈线性关系, 即n=1[8]

    将(10)式代入临界电场强度表达式(9)式, 可得不同孔隙率下PZT95/5的击穿临界电场强度

    Ec=(11k){2k2/3srε0ε0r(k2/3sp2/3)[r2(Y0)2(1αp)2+4GcrY0(1αp)rY0(1αp)]}12
    (12)

    对于致密材料(即p=0), (12)式可以进一步简化为

    Ec=(11k){2rε0ε0r[r2(Y0)2+4GcrY0rY0]}12
    (13)

    基于第2节建立的多孔PZT95/5铁电陶瓷材料在静电场作用下的电击穿模型, 预测不同孔隙率的铁电陶瓷材料的击穿临界电场强度, 并与实验测量值进行对比分析。

    在外加电场作用下, 材料内部的裂纹尖端处往往由于电势分布梯度大而出现局部电场增强现象, 故最易发生电击穿, 其次是不规则气孔。取铁电陶瓷内部的椭球形气孔, 其长、短轴比a/b=0.1, 可近似视为一裂纹。此外, 已有的多孔铁电陶瓷材料内部微观特征及击穿通道的扫描电子显微镜图像表明:通道特征尺寸一般为微米级, 而且随着材料孔隙率的增加而增大[17]。我们据此来选取计算预测中的通道特征半径。

    表 1给出了不同孔隙率条件下, 静电场中铁电陶瓷的电击穿实验结果以及模型预测结果。可以看出:电击穿临界电场强度的预测值和实验值处于同一数量级, 且有部分结果在数值上吻合良好; 随着材料孔隙率的增加, 电击穿临界电场强度降低; 采用热烧结方式制备的致密陶瓷孔隙率近似为零, 电击穿临界场强值最大, 甚至比正常烧结的致密(实际上仍有一定的孔隙率)PZT95/5陶瓷高1个数量级; 此外, 加入球形聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)造孔剂的多孔PZT95/5陶瓷比加入不规则形状糊精(Dextrin)的多孔PZT95/5陶瓷具有更高的抗电击穿强度。

    表  1  不同孔隙率及不同造孔剂的PZT95/5铁电陶瓷材料的击穿临界电场强度
    Table  1.  Dielectric breakdown strength of PZT95/5 ceramics with different porosities and pore formers
    Material[17] Porosity/
    (%)
    Relative dielectric
    constant
    Young's
    modulus/(GPa)
    Path
    size/(μm)
    Predicted breakdown
    strength/(kV/m)
    Experimental breakdown
    strength/(kV/m)
    Dense material
    by hot-press
    method
    0.4 314 148 1.00 16 500 15 000
    Dense 4.1 309 148 5.00 7 460 6 800
    PMMA
    (Spherical shape)
    7.2 281 136 6.00 7 140 -
    11.2 252 121 7.00 6 980 -
    13.5 241 112 8.00 6 680 6 600
    Dextrin
    (Irregular pores)
    8.9 249 121 7.50 6 790 6 650
    10.7 236 112 8.00 6 750 6 550
    下载: 导出CSV 
    | 显示表格

    一般而言, 固体材料的内部微结构特征及电学、力学性能均能影响到其电击穿特性。多孔铁电材料的电击穿临界场强表达式((12)式或(13)式)也清晰地表明, 材料的孔隙率、介电常数、杨氏模量及导电通道特征尺寸等均能影响其电击穿临界场强。

    图 1图 2分别给出了电击穿临界场强随材料孔隙率及导电通道特征尺寸变化的曲线。计算时, 取造孔剂为球形, 即ks=1。从图 1可以看出, 对于同一通道半径, 随着孔隙率的增加, 电击穿临界场强变化不大; 而图 2则表明对于某一孔隙率, 随着导电通道特征尺寸的增大, 电击穿强度显著降低。铁电陶瓷临界电击穿场强随电击穿通道特征尺寸变化明显, 材料孔隙率越大, 内部电击穿通道特征尺寸越大, 由此导致铁电陶瓷材料的电击穿场强显著降低。该结果与已有的一些实验结果定性上一致。

    图  1  PZT95/5陶瓷电击穿场强随孔隙率的变化曲线
    Figure  1.  Dielectric breakdown strength of PZT95/5 ceramics as a function of porosity
    图  2  PZT95/5陶瓷电击穿场强随通道特征尺寸的变化曲线
    Figure  2.  Dielectric breakdown strength of PZT95/5 ceramics as a function of path feature size

    (1) 成功建立了材料内部存在导电通道时多孔铁电陶瓷的电击穿模型, 并基于此模型, 给出了不同孔隙率下铁电陶瓷的电击穿临界场强, 其预测结果与实验测试结果吻合良好, 证实了本模型的可靠性;

    (2) 铁电陶瓷的临界电击穿场强随电击穿通道特征尺寸变化明显, 材料孔隙率越大, 内部电击穿通道特征尺寸越大, 电击穿场强显著降低;

    (3) 本模型可进一步推广到冲击波作用下铁电陶瓷材料的去极化和电失效分析中。

  • [1]
    WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [2]
    MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [3]
    GENG H Y. Public debate on metallic hydrogen to boost high pressure research [J]. Matter and Radiation at Extremes, 2017, 2(6): 275–277. doi: 10.1016/j.mre.2017.10.001
    [4]
    GREGORYANZ E, JI C, DALLADAY-SIMPSON P, et al. Everything you always wanted to know about metallic hydrogen but were afraid to ask [J]. Matter and Radiation at Extremes, 2020, 5(3): 038101. doi: 10.1063/5.0002104
    [5]
    ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [6]
    BABAEV E, SUDBØ A, ASHCROFT N W. A superconductor to superfluid phase transition in liquid metallic hydrogen [J]. Nature, 2004, 431(7009): 666–668. doi: 10.1038/nature02910
    [7]
    BONEV S A, SCHWEGLER E, OGITSU T, et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations [J]. Nature, 2004, 431(7009): 669–672. doi: 10.1038/nature02968
    [8]
    SILVERA I F, COLE J W. Metallic hydrogen: the most powerful rocket fuel yet to exist [J]. Journal of Physics: Conference Series, 2010, 215: 012194. doi: 10.1088/1742-6596/215/1/012194
    [9]
    GINZBURG V L. Nobel lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the ⅩⅩⅠ century [J]. Reviews of Modern Physics, 2004, 76(3): 981–998. doi: 10.1103/RevModPhys.76.981
    [10]
    MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671
    [11]
    GONCHAROV A. Phase diagram of hydrogen at extreme pressures and temperatures; updated through 2019 (review article) [J]. Low Temperature Physics, 2020, 46(2): 97–103. doi: 10.1063/10.0000526
    [12]
    DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [13]
    LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [14]
    EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
    [15]
    HERZFELD K F. On atomic properties which make an element a metal [J]. Physical Review, 1927, 29(5): 701–705. doi: 10.1103/PhysRev.29.701
    [16]
    FCDWARDS P P, SIENKO M J. What is a metal? [J]. International Reviews in Physical Chemistry, 1983, 3(1): 83–137. doi: 10.1080/01442358309353340
    [17]
    EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927–931. doi: 10.1038/nmat3175
    [18]
    NELLIS W J, RUOFF A L, SILVERA I F. Has metallic hydrogen been made in a diamond anvil cell? [EB/OL]. (2012-01-02)[2021-05-21]. https://arxiv.org/abs/1201.0407.
    [19]
    HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
    [20]
    MAO H K, HEMLEY R J, HANFLAND M. Infrared reflectance measurements of the insulator-metal transition in solid hydrogen [J]. Physical Review Letters, 1990, 65(4): 484–487. doi: 10.1103/PhysRevLett.65.484
    [21]
    HEMLEY R J, MAO H K. Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap [J]. Science, 1989, 244(4911): 1462–1465. doi: 10.1126/science.244.4911.1462
    [22]
    EGGERT J H, MOSHARY F, EVANS W J, et al. Absorption and reflectance in hydrogen up to 230 GPa: implications for metallization [J]. Physical Review Letters, 1991, 66(2): 193–196. doi: 10.1103/PhysRevLett.66.193
    [23]
    HANFLAND M, HEMLEY R J, MAO H K. Optical absorption measurements of hydrogen at megabar pressures [J]. Physical Review B, 1991, 43(10): 8767–8770. doi: 10.1103/PhysRevB.43.8767
    [24]
    HEMLEY R J, MAO H K, GONCHAROV A F, et al. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures [J]. Physical Review Letters, 1996, 76(10): 1667–1670. doi: 10.1103/PhysRevLett.76.1667
    [25]
    CHEN N H, STERER E, SILVERA I F. Extended infrared studies of high pressure hydrogen [J]. Physical Review Letters, 1996, 76(10): 1663–1666. doi: 10.1103/PhysRevLett.76.1663
    [26]
    GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al. Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25): 14234–14237. doi: 10.1073/pnas.201528198
    [27]
    LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a
    [28]
    GONCHAROV A F, TSE J S, WANG H, et al. Bonding, structures, and band gap closure of hydrogen at high pressures [J]. Physical Review B, 2013, 87(2): 024101. doi: 10.1103/PhysRevB.87.024101
    [29]
    LIU X D, DALLADAY-SIMPSON P, HOWIE R T, et al. Comment on "observation of the Wigner-Huntington transition to metallic hydrogen" [J]. Science, 2017, 357(6353): 2286. doi: 10.1126/science.aan2286
    [30]
    GONCHAROV A F, STRUZHKIN V V. Comment on "observation of the Wigner-Huntington transition to metallic hydrogen" [J]. Science, 2017, 357(6353): 9736. doi: 10.1126/science.aam9736
    [31]
    EREMETS M I, DROZDOV A P. Comments on the claimed observation of the wigner-huntington transition to metallic hydrogen [EB/OL]. (2017-02-16)[2021-05-21]. https://arxiv.org/abs/1702.05125v1.
    [32]
    LOUBEYRE P, OCCELLI F, DUMAS P. Comment on: observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. (2017-02-23)[2021-05-21]. https://arxiv.org/abs/1702.07192.
    [33]
    SILVERA I, DIAS R. Response to critiques on observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL](2017-03-08)[2021-05-21]. https://arxiv.org/abs/1703.03064
    [34]
    WEMPLE S H, DIDOMENICO M JR. Behavior of the electronic dielectric constant in covalent and ionic materials [J]. Physical Review B, 1971, 3(4): 1338–1351. doi: 10.1103/PhysRevB.3.1338
    [35]
    VAN STRAATEN J, SILVERA I F. Pressure dependence of the optical-absorption edge of solid hydrogen in a diamond-anvil cell [J]. Physical Review B, 1988, 37(11): 6478–6481. doi: 10.1103/PhysRevB.37.6478
    [36]
    HEMLEY R J, HANFLAND M, MAO H K. High-pressure dielectric measurements of solid hydrogen to 170 GPa [J]. Nature, 1991, 350(6318): 488–491. doi: 10.1038/350488a0
    [37]
    GARCÍA A, COHEN M L, EGGERT J H, et al. Dielectric properties of solid molecular hydrogen at high pressure [J]. Physical Review B, 1992, 45(17): 9709–9715. doi: 10.1103/PhysRevB.45.9709
    [38]
    EGGERT J H, GOETTEL K A, SILVERA I F. High-pressure dielectric catastrophe and the possibility that the hydrogen-A phase is metallic [J]. Europhysics Letters, 1990, 11(8): 775–781. doi: 10.1209/0295-5075/11/8/014
    [39]
    MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 Gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131
    [40]
    LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702–704. doi: 10.1038/383702a0
    [41]
    BESEDIN S P, JEPHCOAT A P, HANFLAND M, et al. Powder diffraction from compressed molecular hydrogen in a diamond-anvil cell [J]. Applied Physics Letters, 1997, 71(4): 470–472. doi: 10.1063/1.119582
    [42]
    AKAHAMA Y, NISHIMURA M, KAWAMURA H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Physical Review B, 2010, 82(6): 060101. doi: 10.1103/PhysRevB.82.060101
    [43]
    JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
    [44]
    吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究 [J]. 高压物理学报, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520

    JI C, LI B, YANG W G, et al. Crystallographic studies of ultra-dense solid hydrogen [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
    [45]
    JI C, LI B, LIU W J, et al. Crystallography of low Z material at ultrahigh pressure: case study on solid hydrogen [J]. Matter and Radiation at Extremes, 2020, 5(3): 038401. doi: 10.1063/5.0003288
    [46]
    PRAVICA M G, SILVERA I F. NMR study of ortho-para conversion at high pressure in hydrogen [J]. Physical Review Letters, 1998, 81(19): 4180–4183. doi: 10.1103/PhysRevLett.81.4180
    [47]
    MEIER T, LANIEL D, PENA-ALVAREZ M, et al. Nuclear spin coupling crossover in dense molecular hydrogen [J]. Nature Communications, 2020, 11(1): 6334. doi: 10.1038/s41467-020-19927-y
    [48]
    MEIER T, KHANDARKHAEVA S, JACOBS J, et al. Improving resolution of solid state NMR in dense molecular hydrogen [J]. Applied Physics Letters, 2019, 115(13): 131903. doi: 10.1063/1.5123232
    [49]
    MONSERRAT B, ASHBROOK S E, PICKARD C J. Nuclear magnetic resonance spectroscopy as a dynamical structural probe of hydrogen under high pressure [J]. Physical Review Letters, 2019, 122(13): 135501. doi: 10.1103/PhysRevLett.122.135501
    [50]
    SCHÜLKE W. Inelastic x-ray scattering [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 280(2/3): 338–348. doi: 10.1016/0168-9002(89)90930-3
    [51]
    RUEFF J P, SHUKLA A. Inelastic x-ray scattering by electronic excitations under high pressure [J]. Reviews of Modern Physics, 2010, 82(1): 847–896. doi: 10.1103/RevModPhys.82.847
    [52]
    MAO H K, KAO C C, HEMLEY R J. Inelastic x-ray scattering at ultrahigh pressures [J]. Journal of Physics: Condensed Matter, 2001, 13(34): 7847–7858. doi: 10.1088/0953-8984/13/34/323
    [53]
    SHEN G Y, MAO H K. High-pressure studies with x-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [54]
    MAO H K, SHIRLEY E L, DING Y, et al. Electronic structure of crystalline 4He at high pressures [J]. Physical Review Letters, 2010, 105(18): 186404. doi: 10.1103/PhysRevLett.105.186404
    [55]
    MACDONALD C A. Focusing polycapillary optics and their applications [J]. X-Ray Optics and Instrumentation, 2011, 2010: 867049. doi: 10.1155/2010/867049
    [56]
    CHOW P, XIAO Y M, ROD E, et al. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure [J]. Review of Scientific Instruments, 2015, 86(7): 072203. doi: 10.1063/1.4926890
    [57]
    杨科, 蒋升, 闫帅, 等. 上海同步辐射光源高压相关线站概述 [J]. 高压物理学报, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584

    YANG K, JIANG S, YAN S, et al. Application of Shanghai synchrotron radiation source in high pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584
    [58]
    SCHÜLKE W, NAGASAWA H, MOURIKIS S, et al. Dynamic structure of electrons in Be metal by inelastic x-ray scattering spectroscopy [J]. Physical Review B, 1989, 40(18): 12215–12228. doi: 10.1103/PhysRevB.40.12215
    [59]
    CALIEBE W A, SOININEN J A, SHIRLEY E L, et al. Dynamic structure factor of diamond and LiF measured using inelastic X-ray scattering [J]. Physical Review Letters, 2000, 84(17): 3907–3910. doi: 10.1103/PhysRevLett.84.3907
    [60]
    李晓东, 袁清习, 徐伟, 等. 第四代高能同步辐射光源HEPS及高压相关线站建设 [J]. 高压物理学报, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554

    LI X D, YUAN Q X, XU W, et al. Introduction of fourth-generation high energy photon source HEPS and the beamlines for high-pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
  • Relative Articles

    [1]ZHAO Liang, LI Mingzhe, WU Nannan, WANG Jinlong, LIANG Xiaobo, GU Zhouzhi, LI Huaiyong. Calculation and Numerical Simulation of Winding Discreted Large Cavity of Ultra-High Pressure Die[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 033301. doi: 10.11858/gywlxb.20240851
    [2]LIU Guangfeng, LI Yiwen, ZHANG Jianqiao, SONG Panqi, LI Na. Applications of High-Pressure Solution Device for Synchrotron Radiation Small Angle X-Ray Scattering Method[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 020101. doi: 10.11858/gywlxb.20240831
    [3]NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645
    [4]JI Cheng, LI Bing, YANG Wenge, MAO Ho-kwang. Crystallographic Studies of Ultra-dense Solid Hydrogen[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
    [5]LI Biansheng, SU Fangping, ZHU Yuefu, RUAN Zheng, LI Dandan, QIAN Jiang, GAO Yongyan. Effect of High Pressure Processing on Texture and Quality of Fruits and Vegetables[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035301. doi: 10.11858/gywlxb.20170668
    [6]DENG Jirui, LIU Fangming, LIU Yinjuan, LIU Jin, HE Duanwei. Progress in Preparation of Transparent Ceramics under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010104. doi: 10.11858/gywlxb.20170598
    [7]LIU Haifeng, ZHANG Gongmu, ZHANG Qili, SONG Hongzhou, LI Qiong, ZHAO Yanhong, SUN Bo, SONG Haifeng. Progress on Equation of State of Hydrogen and Deuterium[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 050101. doi: 10.11858/gywlxb.20180587
    [8]YI Jun-Jie, DONG Peng, DING Guo-Wei, HU Xiao-Song, LIAO Xiao-Jun, ZHANG Yan. Process Optimization of Abalone Shucking by High Hydrostatic Pressure Processing and Quality Assessment[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 239-246. doi: 10.11858/gywlxb.2014.02.017
    [9]JIANG Bing, LIU Feng-Xia, SUN Tian, HU Xiao-Song, LIAO Xiao-Jun. Effect of High Hydrostatic Pressure and Thermal Sterilization on Quality of Carrot Juice[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 120-128. doi: 10.11858/gywlxb.2014.01.020
    [10]LI Ren-Jie, LIAO Xiao-Jun, HU Xiao-Song, WU Ji-Hong. Effects of High Hydrostatic Pressure on Proteins[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
    [11]WU Yan-Mei, CHEN Qin-Qin, GAN Zhi-Lin, WANG Ji-En, NI Yuan-Ying. Study on the Extraction of Essential Oil Rich in Nootkatone from Pomelo Peel by High Pressure Processing[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 785-792. doi: 10.11858/gywlxb.2013.05.021
    [12]ZHANG Zhong, HU Xiao-Song, LIAO Xiao-Jun, ZHANG Yan. Review on Sterilization Effects of High Pressure Thermal Sterilization on Bacterial Spores[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 147-152. doi: 10.11858/gywlxb.2013.01.021
    [13]ZHANG Jing, ZHAO Feng, HU Xiao-Song, LIAO Xiao-Jun. Stress Response of Food Microorganisms under High Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
    [14]WANG Rong-Rong, SUN Chuan-Fan, WANG Ting-Ting, HU Xiao-Song, ZHANG Yan, LIAO Xiao-Jun. Research on Mechanism of Ultra-High Pressure Sterilization[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 700-708. doi: 10.11858/gywlxb.2012.06.016
    [15]XIA Yuan-Jing, LIU Zhi-Jun, LI Ning, CHEN Shu-Hua, DENG Ji-Song, LIU Xue-Wu, LI Zhi-Yi. Effects of High Hydrostatic Pressure Treatment on Holothurians Autoenzyme Activity[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 377-384 . doi: 10.11858/gywlxb.2009.05.009
    [16]ZHOU Xiao-Ping, YANG Xiang-Dong, LIU Jin-Chao. Molecular Dynamics Simulation of Water under Superhigh Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 310-314 . doi: 10.11858/gywlxb.2009.04.012
    [17]XIE Hui-Ming, HUANG Xun-Duan, PAN Jian, ZENG Qing-Mei, WANG Hai-Xiang, JIANG Ye-Lei. Effect of High Pressure on Exoproteinase of Bacillus subtilis[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 95-102 . doi: 10.11858/gywlxb.2007.01.016
    [18]ZENG Qing-Mei, PAN Jian, XIE Hui-Ming, YANG Yi, XU Hui-Qun. Influence of Ultra High Pressure (UHP) on Micro-organisms in Watermelon Juice[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 70-74 . doi: 10.11858/gywlxb.2004.01.012
    [19]LONG Qi-Yi, FAN Cun-Gan, XING Zhong-Shu, LI Yi-Yi. Effect of Hydrogen on the Mechanical Behaviour of 22-13-5 Stainless Steel at Room Temperature[J]. Chinese Journal of High Pressure Physics, 1994, 8(2): 113-124 . doi: 10.11858/gywlxb.1994.02.005
    [20]GU Hui-Cheng, LI Feng-Ying, WANG Ji-Fang, CHEN Liang-Chen. X-Ray Diffraction Experiment Observation of Ag at over 100 GPa Pressrues[J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 69-72 . doi: 10.11858/gywlxb.1994.01.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(1859) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return