Volume 36 Issue 2
Apr 2022
Turn off MathJax
Article Contents
DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856
Citation: DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856

Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead

doi: 10.11858/gywlxb.20210856
  • Received Date: 01 Aug 2021
  • Rev Recd Date: 19 Aug 2021
  • Accepted Date: 23 Aug 2021
  • In order to study the expand-rupturing process and the radial velocity distribution of the elliptical cross-section natural fragment warhead shell driven by detonation, a three-dimensional model of the elliptical cross-section warhead was established. The AUTODYN-3D software was used to simulate the expansion and rupture process of the elliptical cross-section natural fragment warhead shell driven by detonation with Lagrange algorithm. The relationship between the minor-major axis fracture time difference and the minor-major axis ratio under the single-point central initiation mode of the end face was studied. The influence of initiation points, minor-major axis ratio and loading ratio (i.e. the mass ratio of charge and shell) on the radial velocity distribution of the elliptical cross-section warhead was studied. The results show that compared with the single-point initiation at the center of the end face, the double-point eccentric initiation at the major axis of the end face and the four-point eccentric initiation at the minor axis of the end face, the double-point eccentric initiation at the minor axis of the end face has the best effect on the radial velocity gain of the elliptical cross-section warhead shell. When the loading ratio is constant, the fracture time of the minor and major axes and the difference between the fracture time of the minor and major axes are linearly related to the minor and major axis ratio. Meanwhile, the real-time minor and major axis ratio of the cross-section shape during the expansion of the warhead shell varies linearly with loading time. The radial velocity distribution of warhead shell fragments decreases with the increase of minor-major axis ratio. When the ratio of minor axis to major axis is constant and the loading ratio is less than 1, the fragment velocity increases sinusoidally with the increase of azimuth angle, and the difference of fragment velocity in minor and major axes shows a linear relationship with the loading ratio.

     

  • loading
  • [1]
    龚柏林, 卢芳云, 李翔宇. D型预制破片战斗部破片飞散过程的数值模拟 [J]. 弹箭与制导学报, 2010, 30(1): 88–90, 94. doi: 10.3969/j.issn.1673-9728.2010.01.027

    GONG B L, LU F Y, LI X Y. Simulation and study on the fragment ejection process of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(1): 88–90, 94. doi: 10.3969/j.issn.1673-9728.2010.01.027
    [2]
    李振铎, 李翔宇, 卢芳云, 等. D字形预制破片战斗部破片能量分布特性 [J]. 弹箭与制导学报, 2016, 36(1): 55–58, 62. doi: 10.15892/j.cnki.djzdxb.2016.01.014

    LI Z D, LI X Y, LU F Y, et al. Study on fragment energy distribution characteristics of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(1): 55–58, 62. doi: 10.15892/j.cnki.djzdxb.2016.01.014
    [3]
    李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. doi: 10.11883/bzycj-2017-0420

    LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. doi: 10.11883/bzycj-2017-0420
    [4]
    LI Y, WEN Y Q. Simulation on damage effectiveness of hexagonal prism aimable warhead with multi-point synchronous initiations [J]. Journal of Beijing Institute of Technology, 2014, 23(1): 1–7. doi: 10.15918/j.jbit1004-0579.2014.01.008
    [5]
    薛再清, 乔良, 王凯, 等. 小锥角椭圆杀伤战斗部破片初速分布规律初探 [C]//第十五届全国战斗部与毁伤技术学术交流会论文集. 北京, 2017: 472−479.

    XUE Z Q, QIAO L, WANG K, et al. A preliminary study on the distribution law of the initial velocity of the fragmentation of the small cone angle elliptical killing warhead [C]//Proceedings of the 15th National Warfare and Damage Technology Academic Exchange Confrence. Beijing, 2017: 472−429.
    [6]
    杨祥, 武海军, 皮爱国, 等. 椭圆截面杀伤战斗部破片初速沿周向分布规律 [J]. 北京理工大学学报, 2018, 38(Suppl 2): 178–183. doi: 10.15918/j.tbit1001-0645.2018.s2.040

    YANG X, WU H J, PI A G, et al. Fragment velocity distribution of elliptical cross-section killing warhead along circumference [J]. Transactions of Beijing Institute of Technology, 2018, 38(Suppl 2): 178–183. doi: 10.15918/j.tbit1001-0645.2018.s2.040
    [7]
    GURNEY R W. Initial velocities of fragments from bombs, shell, grenades [R]. Aberdeen, USA: Ballistic Research Laboratory, 1943.
    [8]
    王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. doi: 10.11883/bzycj-2017-0020

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. doi: 10.11883/bzycj-2017-0020
    [9]
    GARON K D, FAMINU O. Aeroballistic range tests of missile configurations with non-circular cross-sections and aeroprediction comparison results [C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 6−9.
    [10]
    冉洪. 椭圆截面飞行器单独体(高)超声速气动性能初步研究 [C]//第一届近代实验空气动力学会议论文集. 银川: 中国空气动力学会, 2007: 418−424.

    RAN H. Initial investigation of (high) supersonic aerodynamic performance of air vehicle body of elliptic cross-section [C]//Proceeding of 1st Contemporary Experimental Aerodynamics Conference. Yinchuan: Chinese Society of Aerodynamics, 2007: 418−424.
    [11]
    张先锋, 李向东, 沈培辉, 等. 终点效应学 [M]. 北京: 北京理工大学出版社, 2017: 126−172.

    ZHANG X F, LI X D, SHEN P H, et al. Terminal effects [M]. Beijing: Beijing Institute of Technology Press, 2017: 126−172.
    [12]
    GRADY D. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin: Springer, 2006: 243−294.
    [13]
    JONATHAN P G, GREG F, COLIN H. Numerical simulation of fragmentation using AUTODYN-2D and 3D in explosive ordnance safety assessment [C]//The PARARI International Explosive Ordnance Symposium. Canberra, Astralia, 2003: 2−8.
    [14]
    杜宁, 丁力, 卢建东, 等. 不同硬度刻槽壳体爆炸驱动形成破片特性研究 [J]. 弹道学报, 2019, 31(2): 80–86. doi: 10.12115/j.issn.1004-499X(2019)02-014

    DU N, DING L, LU J D, et al. Study on fragments formation of groove shell with different hardness under explosively loading [J]. Journal of Ballistics, 2019, 31(2): 80–86. doi: 10.12115/j.issn.1004-499X(2019)02-014
    [15]
    刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
    [16]
    王力. 柱形壳体偏心起爆时破片飞散特性的研究 [D]. 北京: 北京理工大学, 2017: 2−6.

    WANG L. Research on the dispersion characteristics of fragments from a cylindrical casing under eccentric initiation [D]. Beijing: Beijing Institute of Technology, 2017: 2−6.
    [17]
    沈慧铭, 李伟兵, 王晓鸣, 等. 圆柱壳体装药偏心多点起爆下破片速度的分布 [J]. 爆炸与冲击, 2017, 37(6): 1039–1045. doi: 10.11883/1001-1455(2017)06-1039-07

    SHEN H M, LI W B, WANG X M, et al. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation [J]. Explosion and Shock Waves, 2017, 37(6): 1039–1045. doi: 10.11883/1001-1455(2017)06-1039-07
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views(937) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return