Citation: | GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853 |
[1] |
AL-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
|
[2] |
BRONKHORST C A, MAYEUR J R, LIVESCU V, et al. Structural representation of additively manufactured 316L austenitic stainless steel [J]. International Journal of Plasticity, 2019, 118: 70–86. doi: 10.1016/j.ijplas.2019.01.012
|
[3] |
BAUER J, SCHROER A, SCHWAIGER R, et al. Approaching theoretical strength in glassy carbon nanolattices [J]. Nature Materials, 2016, 15(4): 438–443. doi: 10.1038/NMAT4561
|
[4] |
BONATTI C, MOHR D. Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures [J]. International Journal of Plasticity, 2017, 92: 122–147. doi: 10.1016/j.ijplas.2017.02.003
|
[5] |
MUELLER J, SHEA K. Stepwise graded struts for maximizing energy absorption in lattices [J]. Extreme Mechanics Letters, 2018, 25: 7–15. doi: 10.1016/j.eml.2018.10.006
|
[6] |
ABOU-ALI A M, AL-KETAN O, ROWSHAN R, et al. Mechanical response of 3D printed bending-dominated ligament-based triply periodic cellular polymeric solids [J]. Journal of Materials Engineering and Performance, 2019, 28(4): 2316–2326. doi: 10.1007/s11665-019-03982-8
|
[7] |
赵雪, 闫雷雷, 卢天健, 等. 多层金属多孔复合结构面外压缩吸能特性实验 [J]. 空军工程大学学报(自然科学版), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006
ZHAO X, YAN L L, LU T J, et al. An experimental investigation on energy absorption of multi-layer sandwich structures with metallic corrugated cores under out-of-plane compressive load [J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006
|
[8] |
王中钢. 轻质蜂窝结构力学 [M]. 北京: 科学出版社, 2019: 1–320.
WANG Z G. Mechanics of lightweight honeycomb structure [M]. Beijing: Science Press, 2019: 1–320.
|
[9] |
吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06
WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06
|
[10] |
SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications [J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
|
[11] |
HUANG C W, CHEN L. Negative Poisson’s ratio in modern functional materials [J]. Advanced Materials, 2016, 28(37): 8079–8096. doi: 10.1002/adma.201601363
|
[12] |
JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. doi: 10.1016/j.compositesb.2016.09.037
|
[13] |
WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. doi: 10.1016/j.compositesb.2019.02.011
|
[14] |
GÜMRÜK R, MINES R A W. Compressive behaviour of stainless steel micro-lattice structures [J]. International Journal of Mechanical Sciences, 2013, 68: 125–139. doi: 10.1016/j.ijmecsci.2013.01.006
|
[15] |
PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565(7739): 305–311. doi: 10.1038/s41586-018-0850-3
|
[16] |
DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747–1769. doi: 10.1016/S0022-5096(01)00010-2
|
[17] |
DESHPANDE V S, ASHBY M F, FLECK N A. Foam topology: bending versus stretching dominated architectures [J]. Acta Materialia, 2001, 49(6): 1035–1040. doi: 10.1016/S1359-6454(00)00379-7
|
[18] |
CHENG L, BAI J X, TO A C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 334–359. doi: 10.1016/j.cma.2018.10.010
|
[19] |
WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. doi: 10.1016/j.compositesb.2020.108379
|
[20] |
LI X Y, ROTH C C, TANCOGNE-DEJEAN T, et al. Rate- and temperature-dependent plasticity of additively manufactured stainless steel 316L: characterization, modeling and application to crushing of shell-lattices [J]. International Journal of Impact Engineering, 2020, 145: 103671. doi: 10.1016/j.ijimpeng.2020.103671
|
[21] |
USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures [J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329. doi: 10.1177/1099636210380997
|
[22] |
朱跃峰. 基于ABAQUS的显式动力学分析方法研究 [J]. 机械设计与制造, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029
ZHU Y F. Research on analysis methods of explicit dynamics based on ABAQUS [J]. Machinery Design & Manufacture, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029
|
[23] |
XIANG Y F, YU T X, YANG L M. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators [J]. Materials & Design, 2016, 89: 689–696. doi: 10.1016/j.matdes.2015.10.004
|
[24] |
TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. doi: 10.1179/026708302225002092
|
[25] |
ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165–176. doi: 10.1016/j.ijimpeng.2007.11.008
|
[26] |
YANG L, HARRYSSON O, WEST H, et al. Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting [J]. Acta Materialia, 2012, 60(8): 3370–3379. doi: 10.1016/j.actamat.2012.03.015
|
[27] |
KOLKEN H M A, JANBAZ S, LEEFLANG S M A, et al. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials [J]. Materials Horizons, 2018, 5(1): 28–35. doi: 10.1039/C7MH00699C
|
[28] |
ELIPE J C Á, LANTADA A D. Comparative study of auxetic geometries by means of computer-aided design and engineering [J]. Smart Materials and Structures, 2012, 21(10): 105004. doi: 10.1088/0964-1726/21/10/105004
|
[29] |
SCHWERDTFEGER J, WEIN F, LEUGERING G, et al. Design of auxetic structures via mathematical optimization [J]. Advanced Materials, 2011, 23(22/23): 2650–2654. doi: 10.1002/adma.201004090
|
[30] |
YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures [J]. International Journal of Solids and Structures, 2019, 180/181: 13–29. doi: 10.1016/j.ijsolstr.2019.07.007
|
[31] |
HAN S C, KANG D S, KANG K. Two nature-mimicking auxetic materials with potential for high energy absorption [J]. Materials Today, 2019, 26: 30–39. doi: 10.1016/j.mattod.2018.11.004
|
[32] |
BABAEE S, SHIM J, WEAVER J C, et al. 3D soft metamaterials with negative Poisson’s ratio [J]. Advanced Materials, 2013, 25(36): 5044–5049. doi: 10.1002/adma.201301986
|
[33] |
FRIIS E A, LAKES R S, PARK J B. Negative Poisson’s ratio polymeric and metallic foams [J]. Journal of Materials Science, 1988, 23(12): 4406–4414. doi: 10.1007/BF00551939
|
[34] |
SCHAEDLER T A, RO C J, SORENSEN A E, et al. Designing metallic microlattices for energy absorber applications [J]. Advanced Engineering Materials, 2014, 16(3): 276–283. doi: 10.1002/adem.201300206
|
[35] |
KANAHASHI H, MUKAI T, NIEH T G, et al. Effect of cell size on the dynamic compressive properties of open-celled aluminum foams [J]. Materials Transactions, 2002, 43(10): 2548–2553. doi: 10.2320/matertrans.43.2548
|
[36] |
DE SOUSA R A, GONÇALVES D, COELHO R, et al. Assessing the effectiveness of a natural cellular material used as safety padding material in motorcycle helmets [J]. Simulation, 2012, 88(5): 580–591. doi: 10.1177/0037549711414735
|
[37] |
MOHSENIZADEH M, GASBARRI F, MUNTHER M, et al. Additively-manufactured lightweight Metamaterials for energy absorption [J]. Materials & Design, 2018, 139: 521–530. doi: 10.1016/j.matdes.2017.11.037
|