Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
Citation: GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853

Design and Energy Absorption Characteristic of Improved FCC Lattice Materials

doi: 10.11858/gywlxb.20210853
  • Received Date: 22 Jul 2021
  • Rev Recd Date: 13 Aug 2021
  • Inspired by the metal crystal structures, the improved face centered cubic (FCC) lattice material was designed. The finite element simulations were carried out through ABAQUS, both for body centered cubic (BCC) and FCC lattice materials subjected to quasi-static compression and dynamic impact (10−100 m/s), respectively. The energy absorption characteristic of these two lattice materials were quantitatively analyzed and compared. Moreover, the semi-empirical formulae for plateau stress and plastic energy dissipation under dynamic loading were proposed. The results show that when undergoing quasi-static compression, the energy absorption capability of FCC lattice is better than that of BCC lattice with the same relative density, while the normalized specific energy absorption is 2.6 times larger than that of BCC lattice when the relative density is 10.5%−10.6%. In addition, maintaining the same relative density, FCC lattice performs larger specific stiffness, higher energy absorption efficiency and better compression force efficiency compared with most of the common negative Poisson’s ratio materials and truss lattice materials.

     

  • loading
  • [1]
    AL-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
    [2]
    BRONKHORST C A, MAYEUR J R, LIVESCU V, et al. Structural representation of additively manufactured 316L austenitic stainless steel [J]. International Journal of Plasticity, 2019, 118: 70–86. doi: 10.1016/j.ijplas.2019.01.012
    [3]
    BAUER J, SCHROER A, SCHWAIGER R, et al. Approaching theoretical strength in glassy carbon nanolattices [J]. Nature Materials, 2016, 15(4): 438–443. doi: 10.1038/NMAT4561
    [4]
    BONATTI C, MOHR D. Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures [J]. International Journal of Plasticity, 2017, 92: 122–147. doi: 10.1016/j.ijplas.2017.02.003
    [5]
    MUELLER J, SHEA K. Stepwise graded struts for maximizing energy absorption in lattices [J]. Extreme Mechanics Letters, 2018, 25: 7–15. doi: 10.1016/j.eml.2018.10.006
    [6]
    ABOU-ALI A M, AL-KETAN O, ROWSHAN R, et al. Mechanical response of 3D printed bending-dominated ligament-based triply periodic cellular polymeric solids [J]. Journal of Materials Engineering and Performance, 2019, 28(4): 2316–2326. doi: 10.1007/s11665-019-03982-8
    [7]
    赵雪, 闫雷雷, 卢天健, 等. 多层金属多孔复合结构面外压缩吸能特性实验 [J]. 空军工程大学学报(自然科学版), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006

    ZHAO X, YAN L L, LU T J, et al. An experimental investigation on energy absorption of multi-layer sandwich structures with metallic corrugated cores under out-of-plane compressive load [J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(4): 28–33. doi: 10.3969/j.issn.1009-3516.2017.04.006
    [8]
    王中钢. 轻质蜂窝结构力学 [M]. 北京: 科学出版社, 2019: 1–320.

    WANG Z G. Mechanics of lightweight honeycomb structure [M]. Beijing: Science Press, 2019: 1–320.
    [9]
    吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. doi: 10.11883/1001-1455(2013)02-0163-06
    [10]
    SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications [J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
    [11]
    HUANG C W, CHEN L. Negative Poisson’s ratio in modern functional materials [J]. Advanced Materials, 2016, 28(37): 8079–8096. doi: 10.1002/adma.201601363
    [12]
    JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. doi: 10.1016/j.compositesb.2016.09.037
    [13]
    WANG Z G. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731–741. doi: 10.1016/j.compositesb.2019.02.011
    [14]
    GÜMRÜK R, MINES R A W. Compressive behaviour of stainless steel micro-lattice structures [J]. International Journal of Mechanical Sciences, 2013, 68: 125–139. doi: 10.1016/j.ijmecsci.2013.01.006
    [15]
    PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565(7739): 305–311. doi: 10.1038/s41586-018-0850-3
    [16]
    DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747–1769. doi: 10.1016/S0022-5096(01)00010-2
    [17]
    DESHPANDE V S, ASHBY M F, FLECK N A. Foam topology: bending versus stretching dominated architectures [J]. Acta Materialia, 2001, 49(6): 1035–1040. doi: 10.1016/S1359-6454(00)00379-7
    [18]
    CHENG L, BAI J X, TO A C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 334–359. doi: 10.1016/j.cma.2018.10.010
    [19]
    WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. doi: 10.1016/j.compositesb.2020.108379
    [20]
    LI X Y, ROTH C C, TANCOGNE-DEJEAN T, et al. Rate- and temperature-dependent plasticity of additively manufactured stainless steel 316L: characterization, modeling and application to crushing of shell-lattices [J]. International Journal of Impact Engineering, 2020, 145: 103671. doi: 10.1016/j.ijimpeng.2020.103671
    [21]
    USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures [J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329. doi: 10.1177/1099636210380997
    [22]
    朱跃峰. 基于ABAQUS的显式动力学分析方法研究 [J]. 机械设计与制造, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029

    ZHU Y F. Research on analysis methods of explicit dynamics based on ABAQUS [J]. Machinery Design & Manufacture, 2015(3): 107–109, 113. doi: 10.3969/j.issn.1001-3997.2015.03.029
    [23]
    XIANG Y F, YU T X, YANG L M. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators [J]. Materials & Design, 2016, 89: 689–696. doi: 10.1016/j.matdes.2015.10.004
    [24]
    TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. doi: 10.1179/026708302225002092
    [25]
    ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165–176. doi: 10.1016/j.ijimpeng.2007.11.008
    [26]
    YANG L, HARRYSSON O, WEST H, et al. Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting [J]. Acta Materialia, 2012, 60(8): 3370–3379. doi: 10.1016/j.actamat.2012.03.015
    [27]
    KOLKEN H M A, JANBAZ S, LEEFLANG S M A, et al. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials [J]. Materials Horizons, 2018, 5(1): 28–35. doi: 10.1039/C7MH00699C
    [28]
    ELIPE J C Á, LANTADA A D. Comparative study of auxetic geometries by means of computer-aided design and engineering [J]. Smart Materials and Structures, 2012, 21(10): 105004. doi: 10.1088/0964-1726/21/10/105004
    [29]
    SCHWERDTFEGER J, WEIN F, LEUGERING G, et al. Design of auxetic structures via mathematical optimization [J]. Advanced Materials, 2011, 23(22/23): 2650–2654. doi: 10.1002/adma.201004090
    [30]
    YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures [J]. International Journal of Solids and Structures, 2019, 180/181: 13–29. doi: 10.1016/j.ijsolstr.2019.07.007
    [31]
    HAN S C, KANG D S, KANG K. Two nature-mimicking auxetic materials with potential for high energy absorption [J]. Materials Today, 2019, 26: 30–39. doi: 10.1016/j.mattod.2018.11.004
    [32]
    BABAEE S, SHIM J, WEAVER J C, et al. 3D soft metamaterials with negative Poisson’s ratio [J]. Advanced Materials, 2013, 25(36): 5044–5049. doi: 10.1002/adma.201301986
    [33]
    FRIIS E A, LAKES R S, PARK J B. Negative Poisson’s ratio polymeric and metallic foams [J]. Journal of Materials Science, 1988, 23(12): 4406–4414. doi: 10.1007/BF00551939
    [34]
    SCHAEDLER T A, RO C J, SORENSEN A E, et al. Designing metallic microlattices for energy absorber applications [J]. Advanced Engineering Materials, 2014, 16(3): 276–283. doi: 10.1002/adem.201300206
    [35]
    KANAHASHI H, MUKAI T, NIEH T G, et al. Effect of cell size on the dynamic compressive properties of open-celled aluminum foams [J]. Materials Transactions, 2002, 43(10): 2548–2553. doi: 10.2320/matertrans.43.2548
    [36]
    DE SOUSA R A, GONÇALVES D, COELHO R, et al. Assessing the effectiveness of a natural cellular material used as safety padding material in motorcycle helmets [J]. Simulation, 2012, 88(5): 580–591. doi: 10.1177/0037549711414735
    [37]
    MOHSENIZADEH M, GASBARRI F, MUNTHER M, et al. Additively-manufactured lightweight Metamaterials for energy absorption [J]. Materials & Design, 2018, 139: 521–530. doi: 10.1016/j.matdes.2017.11.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(1225) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return