Citation: | GONG Lei, WANG Jingshu, ZHANG Junkai, CHEN Guangbo, ZHANG Han, WU Xiaoxin, HU Tingjing, CUI Hang. Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842 |
[1] |
WANG G F, PENG Q, LI Y D. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals [J]. Journal of the American Chemical Society, 2009, 131(40): 14200–14201. doi: 10.1021/ja906732y
|
[2] |
ZHANG C M, LI C X, PENG C, et al. Facile and controllable synthesis of monodisperse CaF2 and CaF2: Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers [J]. Chemistry—A European Journal, 2010, 16(19): 5672–5680. doi: 10.1002/chem.200903137
|
[3] |
ALHARBI N D. Size controlled CaF2 nanocubes and their dosimetric properties using photoluminescence technique [J]. Journal of Nanomaterials, 2015: 136957.
|
[4] |
XIAO G J, WANG K, ZHU L, et al. Pressure-induced reversible phase transformation in nanostructured Bi2Te3 with reduced transition pressure [J]. The Journal of Physical Chemistry C, 2015, 119(7): 3843–3848. doi: 10.1021/jp512565b
|
[5] |
GUPTA S K, ZUNIGA J P, POKHREL M, et al. High pressure induced local ordering and tunable luminescence of La2Hf2O7: Eu3+ nanoparticles [J]. New Journal of Chemistry, 2020, 44(14): 5463–5472. doi: 10.1039/D0NJ00585A
|
[6] |
ZHAO R, WANG P, YAO B B, et al. Co-effect on zinc blende-rocksalt phase transition in CdS nanocrystals [J]. RSC Advances, 2015, 5(23): 17582–17587. doi: 10.1039/C4RA14798G
|
[7] |
ZHANG J, ZHU H Y, WU X X, et al. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets [J]. Nanoscale, 2015, 7(24): 10807–10816. doi: 10.1039/C5NR02131F
|
[8] |
MENG L Y, LANE J M D, BACA L, et al. Shape dependence of pressure-induced phase transition in CdS semiconductor nanocrystals [J]. Journal of the American Chemical Society, 2020, 142(14): 6505–6510. doi: 10.1021/jacs.0c01906
|
[9] |
SRIVASTAVA A, TYAGI N, SHARMA U S, et al. Pressure induced phase transformation and electronic properties of AlAs [J]. Materials Chemistry and Physics, 2011, 125(1/2): 66–71.
|
[10] |
TOLBERT S H, ALIVISATOS A P. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals [J]. Science, 1994, 265(5170): 373–376. doi: 10.1126/science.265.5170.373
|
[11] |
MARTÍN-RODRÍGUEZ R, GONZÁLEZ J, VALIENTE R, et al. Reversibility of the zinc-blende to rock-salt phase transition in cadmium sulfide nanocrystals [J]. Journal of Applied Physics, 2012, 111(6): 063516. doi: 10.1063/1.3697562
|
[12] |
BUSHIRI M J, VINOD R, SEGURA A, et al. Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy [J]. Journal of Physics: Condensed Matter, 2015, 27(38): 385401. doi: 10.1088/0953-8984/27/38/385401
|
[13] |
WANG Z W, GUO Q X. Size-dependent structural stability and tuning mechanism: a case of zinc sulfide [J]. The Journal of Physical Chemistry C, 2009, 113(11): 4286–4295. doi: 10.1021/jp808244a
|
[14] |
LV H, YAO M G, LI Q J, et al. Effect of grain size on pressure-induced structural transition in Mn3O4 [J]. The Journal of Physical Chemistry C, 2012, 116(3): 2165–2171. doi: 10.1021/jp2067028
|
[15] |
WANG L, YANG W G, DING Y, et al. Size-dependent amorphization of nanoscale Y2O3 at high pressure [J]. Physical Review Letters, 2010, 105(9): 095701. doi: 10.1103/PhysRevLett.105.095701
|
[16] |
SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al. Size-dependent pressure-induced amorphization in Nanoscale TiO2 [J]. Physical Review Letters, 2006, 96(13): 135702. doi: 10.1103/PhysRevLett.96.135702
|
[17] |
LI Q J, LIU B B, WANG L, et al. Pressure-induced amorphization and polyamorphism in one-dimensional single-crystal TiO2 nanomaterials [J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 309–314. doi: 10.1021/jz9001828
|
[18] |
QUAN Z W, WANG Y X, BAE I T, et al. Reversal of hall-petch effect in structural stability of PbTe nanocrystals and associated variation of phase transformation [J]. Nano Letters, 2011, 11(12): 5531–5536. doi: 10.1021/nl203409s
|
[19] |
WANG J S, CUI Q L, HU T J, et al. Pressure-induced amorphization in BaF2 nanoparticles [J]. The Journal of Physical Chemistry C, 2016, 120(22): 12249–12253. doi: 10.1021/acs.jpcc.6b01858
|
[20] |
CUI S X, FENG W X, HU H Q, et al. Structural stabilities, electronic and optical properties of CaF2 under high pressure: a first-principles study [J]. Computational Materials Science, 2009, 47(1): 41–45. doi: 10.1016/j.commatsci.2009.06.011
|
[21] |
GERWARD L, OLSEN J S, STEENSTRUP S, et al. X-ray diffraction investigations of CaF2 at high pressure [J]. Journal of Applied Crystallography, 1992, 25(5): 578–581. doi: 10.1107/S0021889892004096
|
[22] |
DORFMAN S M, JIANG F M, MAO Z, et al. Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures [J]. Physical Review B, 2010, 81(17): 174121. doi: 10.1103/PhysRevB.81.174121
|
[23] |
WANG J S, HAO J, WANG Q S, et al. Pressure-induced structural transition in CaF2 nanocrystals [J]. Physica Status Solidi B, 2011, 248(5): 1115–1118. doi: 10.1002/pssb.201000627
|
[24] |
WANG J S, YANG J H, HU T J, et al. Structural phase transition and compressibility of CaF2 nanocrystals under high pressure [J]. Crystals, 2018, 8(5): 199. doi: 10.3390/cryst8050199
|
[25] |
WANG J S, ZHU H Y, MA C L, et al. High-pressure behaviors of SrF2 nanocrystals with two morphologies [J]. The Journal of Physical Chemistry C, 2013, 117(1): 615–619. doi: 10.1021/jp306742p
|
[26] |
WANG J S, MA C L, ZHU H Y, et al. Structural transition of BaF2 nanocrystals under high pressure [J]. Chinese Physics C, 2013, 37(8): 088001. doi: 10.1088/1674-1137/37/8/088001
|
[27] |
WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121–124. doi: 10.1038/nature03968
|
[28] |
ZHANG X M, QUAN Z W, YANG J, et al. Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties [J]. Nanotechnology, 2008, 19(7): 075603. doi: 10.1088/0957-4484/19/7/075603
|
[29] |
BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
|
[30] |
WANG J S, MA C L, ZHOU D, et al. Structural phase transitions of SrF2 at high pressure [J]. Journal of Solid State Chemistry, 2012, 186: 231–234. doi: 10.1016/j.jssc.2011.12.015
|
[31] |
HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
|
[32] |
PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
|
[33] |
QADRI S B, YANG J, RATNA B R, et al. Pressure induced structural transitions in nanometer size particles of PbS [J]. Applied Physics Letters, 1996, 69(15): 2205–2207. doi: 10.1063/1.117166
|
[34] |
ANGEL R J. The high-pressure, high-temperature equation of state of calcium fluoride, CaF2 [J]. Journal of Physics: Condensed Matter, 1993, 5(11): L141–L144. doi: 10.1088/0953-8984/5/11/001
|