Citation: | ZHANG Haoyu, ZHANG Shukai, CHENG Li, LI Yuan, WEN Yuquan. Influence of Sequential Initiation Parameters on Damage Effectiveness of Aimed Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025101. doi: 10.11858/gywlxb.20210836 |
[1] |
崔瀚, 张国新. 定向战斗部研究现状及展望 [J]. 飞航导弹, 2019(3): 84–89.
CUI H, ZHANG G X. The status and prospect of aimed warhead [J]. Aerodynamic Missile Journal, 2019(3): 84–89.
|
[2] |
LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115.
|
[3] |
WANG L, HAN F, ZHOU Q. The projection angles of fragments from a cylindrical casing filled with charge initiated at one end [J]. International Journal of Impact Engineering, 2017, 103: 138–148. doi: 10.1016/j.ijimpeng.2017.01.012
|
[4] |
HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40: 215–220. doi: 10.1002/prep.201400180
|
[5] |
WANG M, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. doi: 10.1002/prep.201200025
|
[6] |
LI Y, LI Y H, WEN Y Q. Radial distribution of fragment velocity of asymmetrically initiated warhead [J]. International Journal of Impact Engineering, 2017, 99: 39–47. doi: 10.1016/j.ijimpeng.2016.09.007
|
[7] |
王树山, 马晓飞, 隋树元, 等. 偏心多点起爆战斗部破片飞散实验研究 [J]. 北京理工大学学报, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008
WANG S S, MA X F, SUI S Y, et al. Experimental research on fragments dispersion of the warhead under asymmetrical multi-spots initiation [J]. Journal of Beijing Institute of Technology, 2001, 21(2): 177–179. doi: 10.3969/j.issn.1001-0645.2001.02.008
|
[8] |
叶小军, 韩玉, 陈庆宝. 偏心起爆战斗部速度增益的数值模拟及实验 [J]. 火炸药学报, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009
YE X J, HAN Y, CHEN Q B. Numerical simulation and experiment of velocity gains on the non-central detonation warhead [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 29–34. doi: 10.3969/j.issn.1007-7812.2009.03.009
|
[9] |
兰志, 杨亚东, 韩玉. 起爆方式对偏心式定向战斗部破片速度分布的影响研究 [J]. 弹箭与制导学报, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047
LAN Z, YANG Y D, HAN Y. Research on the distribution of fragment velocity of a eccentric initiation warhead by initiation mode [J]. Journal of Projectiles, Rocks, Missiles and Guidance, 2010, 30(3): 159–161. doi: 10.3969/j.issn.1673-9728.2010.03.047
|
[10] |
张博, 李伟兵, 李文彬, 等. 偏心起爆战斗部随机破片数值仿真 [J]. 高压物理学报, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013
ZHANG B, LI W B, LI W B, et al. Numerical simulation of the dispersion of random fragments under asymmetrical initiation [J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 442–448. doi: 10.11858/gywlxb.2012.04.013
|
[11] |
武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验 [J]. 火炸药学报, 2016, 39(3): 89–94.
WU J B, GOU R J, ZHENG J J, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead [J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 89–94.
|
[12] |
LI Y, WEN Y Q. Simulation on damage effectiveness of hexagonal prism aimable warhead with multi-point synchronous initiations [J]. Journal of Beijing Institute of Technology, 2014, 23(1): 1–7.
|
[13] |
LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14.
|
[14] |
刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011
LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materical, 2017, 25(1): 63–68. doi: 10.11943/j.issn.1006-9941.2017.01.011
|
[15] |
南宇翔, 蒋建伟, 王树有, 等. 子弹药落地冲击响应数值模拟及实验验证 [J]. 振动与冲击, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036
NAN Y X, JIANG J W, WANG S Y, et al. Numerical simulation and test for impact response of submunitions drop [J]. Journal of Vibration and Shock, 2013, 32(3): 182–187. doi: 10.3969/j.issn.1000-3835.2013.03.036
|
[16] |
刘彦, 黄风雷, 吴相彬. 杀爆战斗部对导弹阵地的毁伤效能研究 [J]. 北京理工大学学报, 2008, 28(5): 385–387.
LIU Y, HUANG F L, WU X B. A study on the damage effectiveness of blast-fragmentation warhead on attacking anti-aircraft missile positions [J]. Transactions of Beijing Institute of Technology, 2008, 28(5): 385–387.
|
[17] |
黄正祥, 祖旭东. 终点效应[M]. 北京: 科学出版社, 2014.
|
[18] |
李元, 李艳华, 刘琛, 等. 爆轰波定向战斗部起爆参数研究 [J]. 含能材料, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017
LI Y, LI Y H, LIU C, et al. The initiation parameter of detonation wave aiming warhead [J]. Chinese Journal of Energetic Materical, 2016, 24(9): 915–921. doi: 10.11943/j.issn.1006-9941.2016.09.017
|
[19] |
宋柳丽. 偏心起爆式定向战斗部破片速度分布及增益研究[D]. 南京: 南京理工大学, 2008.
SONG L L. Study on fragment velocity distribution and enhancement of asymmetrically initiated aimable warhead [D]. Nanjing: Nanjing University of Science and Technology, 2008.
|
[20] |
LI Y, XIONG S H, LI X G, et al. Mechanism of velocity enhancement of asymmetrically two lines initiated warhead [J]. International Journal of Impact Engineering, 2018, 122: 161–174. doi: 10.1016/j.ijimpeng.2018.07.011
|
[1] | YANG Huanhuan, ZHANG Enlai, LI Xinzhu, ZOU Liyong. Interface proximity effect on the evolution of a shock-accelerated heavy gas cylinder[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251008 |
[2] | ZHANG Kunyu, CHEN De, WU Hao. Numerical Simulation and Parametric Analysis of High-Pressure Gas-Driven Shock Tube[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 033301. doi: 10.11858/gywlxb.20220704 |
[3] | DENG Yuxuan, ZHANG Xianfeng, FENG Kehua, LIU Chuang, DU Ning, LIU Junwei, LI Pengcheng. Numerical Simulation of Fragmentation Process Driven by Explosion in Elliptical Cross-Section Warhead[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025104. doi: 10.11858/gywlxb.20210856 |
[4] | HUANG Yong, XIE Li-Feng, YE Jing-Fang, LU Chang-Bo, AN Gao-Jun, XIONG Chun-Hua, LI Yong-Jian, XU Chun. Experimental Study on Diesel Fuel Film Dispersed by Shock Wave and High-Speed Airflow[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 227-234. doi: 10.11858/gywlxb.2016.03.008 |
[5] | DUAN Yao-Yong, GUO Yong-Hui, QIU Ai-Ci. Maximum Compression Ratios of Elemental Solids and Corresponding Thermodynamic Quantities on Shock Adiabat[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 136-142. doi: 10.11858/gywlxb.2015.02.008 |
[6] | ZHANG Xiao-Li, XIE Li-Feng, HONG Tao, DONG He-Fei. Numerical Simulation of Quartz Sand Dispersion under Shock Tube Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 97-102. doi: 10.11858/gywlxb.2014.01.016 |
[7] | ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013 |
[8] | MAO Yong-Jian, LI Yu-Long, CHEN Ying, HUANG Han-Jun, ZHANG Qing-Ping, MIAO Ying-Gang. Numerical Simulation of Cylindrical Shell Loaded by Explosive Rods (Ⅰ): Fluid-Structure Interaction Simulation[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155-162. doi: 10.11858/gywlxb.2012.02.006 |
[9] | ZHU Yue-Jin, DONG Gang, LIU Yi-Xin, FAN Bao-Chun. Three-Dimensional Numerical Investigation of Deformation and Instability of High-Density Bubble Induced by Incident and Reflected Shock Waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 266-272. doi: 10.11858/gywlxb.2012.03.004 |
[10] | GUO Wen-Can, LIU Cang-Li, TAN Duo-Wang, LIU Jin-Hong, ZOU Li-Yong, ZHANG Guang-Sheng. Experimental Investigation on Spherical Bubble Evolution Loaded by a Weak Planar Shock Wave[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 460-466 . doi: 10.11858/gywlxb.2009.06.010 |
[11] | PEI Xiao-Yang, LI Ping, DONG Yu-Bin. 2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012 |
[12] | GUI Ming-Yue, FAN Bao-Chun, DONG Gang, YU Lu-Jun. Numerical Investigations of Detonation Induced by Implosion Flame inResonator Cavity[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 151-156 . doi: 10.11858/gywlxb.2007.02.006 |
[13] | DONG Gang, YE Jing-Fang, FAN Bao-Chun. Experimental and Numerical Investigation of Shock Wave Focusing and Reflection[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 359-364 . doi: 10.11858/gywlxb.2006.04.004 |
[14] | ZHAO He-Yun, KAN Jia-De, WANG Hai, LIU Zuo-Quan. Shock Wave Crystallization of Amorphous Alloys FeSiB, FeMoSiB and FeCuNbSiB[J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 131-136 . doi: 10.11858/gywlxb.2002.02.008 |
[15] | LU Shou-Xiang, QIN You-Hua. Deformation and Breakup of Droplets behind Shock Wave[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 151-154 . doi: 10.11858/gywlxb.2000.02.012 |
[16] | LIU Ying-Kai, ZHOU Xiao-Feng, LIU Zuo-Quan, HOU De-Dong. Experimental Studies on the Nano-Crystallizations of Amorphous Fe78B13Si9 and FeMoBSi Alloy under Shock Wave[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 230-236 . doi: 10.11858/gywlxb.1999.03.013 |
[17] | ZHANG Ruo-Qi, TANG Wen-Hui, ZHAO Guo-Min. Several Influential Factors on Numerical Simulated Results for the X-Ray Thermal Shock Waves[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 161-167 . doi: 10.11858/gywlxb.1998.03.001 |
[18] | PENG Chang-Xian, XU Yong-Liang. Numerical Simulation for the Propagation of Thermal Shock Waves Induced in Materials Irradiated by Pulsed Electron Beam[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 282-290 . doi: 10.11858/gywlxb.1998.04.007 |
[19] | FAN Bao-Chun, CUI Dong-Min, CHEN Qi-Feng. Chemical Reaction Induced by Steady Shock Wave[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 182-188 . doi: 10.11858/gywlxb.1997.03.004 |
[20] | ZHOU Nan, QIAO Deng-Jiang. Analytical Solutions of One-Dimensional Thermal Shock Wave[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 124-132 . doi: 10.11858/gywlxb.1995.02.007 |