Citation: | YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827 |
[1] |
卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517–535.
LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517–535.
|
[2] |
吴林志, 泮世东. 夹芯结构的设计及制备现状 [J]. 中国材料进展, 2009, 28(4): 40–45.
WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures [J]. Materials China, 2009, 28(4): 40–45.
|
[3] |
HOU A, GRAMOL K. Design and fabrication of CFRP interstage attach fitting for launch vehicles [J]. Journal of Aerospace Engineering, 1999, 12(3): 83–91. doi: 10.1061/(ASCE)0893-1321(1999)12:3(83)
|
[4] |
HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
|
[5] |
WEI K, YANG Q D, YANG X J, et al. Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting [J]. Thin-Walled Structures, 2020, 146: 106189. doi: 10.1016/j.tws.2019.106189
|
[6] |
方岱宁, 郭海成, SOH A K, 等. 轻质点阵材料的力学行为分析[C]//首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 北京: 中国力学学会, 2004.
|
[7] |
易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述 [J]. 功能材料, 2017, 48(10): 10055–10065.
YI C Y, BAI L, CHEN X H, et al. Review on the metal three-dimensional lattice topology configurations research and application status [J]. Journal of Functional Materials, 2017, 48(10): 10055–10065.
|
[8] |
范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展 [J]. 力学进展, 2007, 37(1): 99–112.
FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength [J]. Advances in Mechanics, 2007, 37(1): 99–112.
|
[9] |
AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. doi: 10.1016/j.ijsolstr.2010.10.018
|
[10] |
ZHANG P, TOMAN J, YU Y Q, et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation [J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004. doi: 10.1115/1.4028724
|
[11] |
ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. doi: 10.1016/j.mechmat.2015.11.014
|
[12] |
SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. doi: 10.1016/j.compstruct.2012.11.002
|
[13] |
WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4
|
[14] |
殷莎. 基于Ashby设计思想的新型点阵结构——制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[15] |
YIN S, CHEN H Y, LI J N, et al. Effects of architecture level on mechanical properties of hierarchical lattice materials [J]. International Journal of Mechanical Sciences, 2019, 157/158: 282–292.
|
[16] |
LI Z, YANG F. Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations [J]. Extreme Mechanics Letters, 2017, 16: 41–48. doi: 10.1016/j.eml.2017.09.003
|
[17] |
PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565: 305–311. doi: 10.1038/s41586-018-0850-3
|
[18] |
YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites [J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341. doi: 10.1016/j.jmps.2021.104341
|
[19] |
XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. doi: 10.3390/ma13184083
|
[20] |
LU Z H, YAN W Y, YAN P F, et al. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism [J]. Applied Science, 2020, 10(21): 7525. doi: 10.3390/app10217525
|
[21] |
MA C P, ZHANG Z W, LUCE B, et al. Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework [J]. NPJ Computational Materials, 2020, 6(1): 1–8. doi: 10.1038/s41524-019-0267-z
|
[22] |
VANGELATOS Z, KOMVOPOULOS K, GRIGOROPOULOS C P. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification [J]. Journal of the Mechanics and Physics of Solids, 2020, 144: 104112. doi: 10.1016/j.jmps.2020.104112
|
[23] |
WU W W, KIM S, RAMAZANI A, et al. Twin mechanical metamaterials [EB/OL]. (2021-01-04)[2021-06-21]. https://arxiv.org/-abs/2101.00927.
|
[24] |
BIAN Y J, LI P H, YANG F, et al. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics, 2020, 41(10): 1561–1582. doi: 10.1007/s10483-020-2648-8
|
[25] |
LI W W, FAN H L, BIAN Y J, et al. Plastic deformation and energy absorption of polycrystalline-like lattice structures [J]. Materials & Design, 2021, 198(1): 109321.
|
[26] |
BIAN Y J, YANG F, LI P H, et al. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals [J]. Composite Structures, 2021, 271: 114103. doi: 10.1016/j.compstruct.2021.114103
|
[27] |
QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅰ: quasi-static strength predicted by limit analysis [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1223–1230. doi: 10.1016/j.ijimpeng.2009.05.011
|