Volume 36 Issue 2
Apr 2022
Turn off MathJax
Article Contents
YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
Citation: YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827

Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces

doi: 10.11858/gywlxb.20210827
  • Received Date: 21 Jun 2021
  • Rev Recd Date: 09 Jul 2021
  • Benefitted by the 3D printing technologies, metallic lattice materials have gained remarkable development. Energy absorption is one of the most important applications for lattice materials. This paper presents our recent work on the energy absorption of polycrystal-like lattice materials. Inspired by the grain boundary strengthening mechanisms of polycrystalline metals, the polycrystalline-like macroscopic lattice structures were designed and constructed by introducing the macro grain boundaries or twin boundaries. Attention will be paid to the crashworthiness and energy absorption properties of the new structures. Specifically, three types of polycrystal-like lattice structures with the simple cubic lattice, the face-centered cubic lattice, and the triclinic lattice cell configurations were created. A parametric study was carried out using the finite element simulations and the quasi-static compression tests based on additive manufacturing technology. The influences of the grain size (i.e., grain boundary density), the grain boundary mis-orientation angle, the interface orientation angle on the deformation modes and the energy absorption properties were investigated. It is found that the interfaces with high symmetry can mostly enhance the energy absorption capability of the lattice structures. Further study demonstrates that the Hall-Petch relationship that was usually used to describe the grain boundary strengthening mechanism of polycrystalline materials can also be applied to the macro polycrystal-like lattice structures. This paper is expected to provide guides for the development of new lightweight energy absorption structures.

     

  • loading
  • [1]
    卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517–535.

    LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517–535.
    [2]
    吴林志, 泮世东. 夹芯结构的设计及制备现状 [J]. 中国材料进展, 2009, 28(4): 40–45.

    WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures [J]. Materials China, 2009, 28(4): 40–45.
    [3]
    HOU A, GRAMOL K. Design and fabrication of CFRP interstage attach fitting for launch vehicles [J]. Journal of Aerospace Engineering, 1999, 12(3): 83–91. doi: 10.1061/(ASCE)0893-1321(1999)12:3(83)
    [4]
    HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
    [5]
    WEI K, YANG Q D, YANG X J, et al. Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting [J]. Thin-Walled Structures, 2020, 146: 106189. doi: 10.1016/j.tws.2019.106189
    [6]
    方岱宁, 郭海成, SOH A K, 等. 轻质点阵材料的力学行为分析[C]//首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 北京: 中国力学学会, 2004.
    [7]
    易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述 [J]. 功能材料, 2017, 48(10): 10055–10065.

    YI C Y, BAI L, CHEN X H, et al. Review on the metal three-dimensional lattice topology configurations research and application status [J]. Journal of Functional Materials, 2017, 48(10): 10055–10065.
    [8]
    范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展 [J]. 力学进展, 2007, 37(1): 99–112.

    FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength [J]. Advances in Mechanics, 2007, 37(1): 99–112.
    [9]
    AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. doi: 10.1016/j.ijsolstr.2010.10.018
    [10]
    ZHANG P, TOMAN J, YU Y Q, et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation [J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004. doi: 10.1115/1.4028724
    [11]
    ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. doi: 10.1016/j.mechmat.2015.11.014
    [12]
    SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. doi: 10.1016/j.compstruct.2012.11.002
    [13]
    WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4
    [14]
    殷莎. 基于Ashby设计思想的新型点阵结构——制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [15]
    YIN S, CHEN H Y, LI J N, et al. Effects of architecture level on mechanical properties of hierarchical lattice materials [J]. International Journal of Mechanical Sciences, 2019, 157/158: 282–292.
    [16]
    LI Z, YANG F. Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations [J]. Extreme Mechanics Letters, 2017, 16: 41–48. doi: 10.1016/j.eml.2017.09.003
    [17]
    PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565: 305–311. doi: 10.1038/s41586-018-0850-3
    [18]
    YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites [J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341. doi: 10.1016/j.jmps.2021.104341
    [19]
    XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. doi: 10.3390/ma13184083
    [20]
    LU Z H, YAN W Y, YAN P F, et al. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism [J]. Applied Science, 2020, 10(21): 7525. doi: 10.3390/app10217525
    [21]
    MA C P, ZHANG Z W, LUCE B, et al. Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework [J]. NPJ Computational Materials, 2020, 6(1): 1–8. doi: 10.1038/s41524-019-0267-z
    [22]
    VANGELATOS Z, KOMVOPOULOS K, GRIGOROPOULOS C P. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification [J]. Journal of the Mechanics and Physics of Solids, 2020, 144: 104112. doi: 10.1016/j.jmps.2020.104112
    [23]
    WU W W, KIM S, RAMAZANI A, et al. Twin mechanical metamaterials [EB/OL]. (2021-01-04)[2021-06-21]. https://arxiv.org/-abs/2101.00927.
    [24]
    BIAN Y J, LI P H, YANG F, et al. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics, 2020, 41(10): 1561–1582. doi: 10.1007/s10483-020-2648-8
    [25]
    LI W W, FAN H L, BIAN Y J, et al. Plastic deformation and energy absorption of polycrystalline-like lattice structures [J]. Materials & Design, 2021, 198(1): 109321.
    [26]
    BIAN Y J, YANG F, LI P H, et al. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals [J]. Composite Structures, 2021, 271: 114103. doi: 10.1016/j.compstruct.2021.114103
    [27]
    QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅰ: quasi-static strength predicted by limit analysis [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1223–1230. doi: 10.1016/j.ijimpeng.2009.05.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(1285) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return