Citation: | LI Ping, SUN Chonghui, HUANG Ruiyuan, DUAN Shiwei. The Law of Combined Effect of Rate and Temperature on Compressive Strength of Concrete Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024204. doi: 10.11858/gywlxb.20210825 |
[1] |
Comite Euro-International du Beton. Concrete structures under impact and impulsive loading [S]. Bulletin d'Information, Lausanne, 1988.
|
[2] |
Comite Euro-International du Beton. CEB-FIP model code 1990 [M]. Lausanne: Committee Euro-International du Beton, 1993.
|
[3] |
高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. doi: 10.11858/gywlxb.2017.03.007
GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. doi: 10.11858/gywlxb.2017.03.007
|
[4] |
ACI Committee 349. Code requirements for nuclear safety-related concrete structures (ACI 349-13) & commentary [S]. Farmington Hills, MI: American Concrete Institute, 2013.
|
[5] |
ACI Committee 370. Report for the design of concrete structures for blast effects: ACI 370R-2014 [S]. Farmington Hills, MI: American Concrete Institute, 2014.
|
[6] |
Fib Commission 8. Code-type models for concrete behaviour: state-of-the-art report 70 [R]. Lausanne: Fib Fédération Internationale du Béton, 2013.
|
[7] |
Unified Facilities Criteria (UFC) 3-340-02. Structures to resist the effects of accidental explosions [R]. Washington D C, US: Department of Defense, 2008.
|
[8] |
PHAM D-T, VU M-N, TRIEU H T, et al. A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 ℃ of concrete [J]. Fire Safety Journal, 2020, 114: 103011. doi: 10.1016/j.firesaf.2020.103011
|
[9] |
AISC. Specification for structural steel buildings: ANSI/AISC 360-10 [S]. Chicago, IL: American Institute of Steel Construction, Inc., 2010.
|
[10] |
Eurocode 2: design of concrete structures-part 1-2: general rules—structural fire design: EN 1992-1-2 [S]. Brussels: European Committee for Standardization, 2004.
|
[11] |
CHAN Y N, PENG G F, ANSON M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures [J]. Cement and Concrete Composites, 1999, 21: 23–27. doi: 10.1016/S0958-9465(98)00034-1
|
[12] |
NOVAK J, KOHOUTKOVA A. Mechanical properties of concrete composites subject to elevated temperature [J]. Fire Safety Journal, 2018, 95: 66–76. doi: 10.1016/j.firesaf.2017.10.010
|
[13] |
SESHU D R, PRATUSHA A. Study on compressive strength behaviour of normal concrete and self-compacting concrete subjected to elevated temperatures [J]. Magazine of Concrete Research, 2013, 65(7): 415–421. doi: 10.1680/macr.12.00108
|
[14] |
SIDERIS K K. Mechanical characteristics of self-consolidating concrete exposed to elevated temeperatures [J]. ASCE Journal of Materials in Civil Engineering. 2007, 19(8): 648–654.
|
[15] |
PERSSON B. Fire resistance of self-compacting concrete [J]. Materials and Structures, 2004, 37: 575–584.
|
[16] |
KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures [J]. Cement and Concrete Research, 2011, 41: 1112–1122.
|
[17] |
ABRAMS M S. Compressive strength of concrete at temperatures to 1600F [J]. Michigan, USA: ACI Special Publication, 1971, 25: 33–58.
|
[18] |
MALHOTRA H L. The effect of temperature on the compressive strength of concrete [J]. Magazine of Concrete Research, 1956, 8(23): 85–94. doi: 10.1680/macr.1956.8.23.85
|
[19] |
LIE T T. Structural fire protection [M]. New York: American Society of Civil Engineers, 1992.
|
[20] |
CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. doi: 10.1016/j.ijimpeng.2015.07.002
|
[21] |
REN W B, XU J Y, SU H Y. Dynamic compressive behaviour of concrete after exposure to elevated temperatures [J]. Materials and Structures, 2016, 49: 3321–3334.
|
[22] |
ABRAM D A. Effect of rate of application of load on the compressive strength of concrete [M] . Proceeding of ASTM 17, Part 2, 1917: 364–377.
|
[23] |
ZHAI Y, DENG Z C, LI N, et al. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model [J]. Construction and Building Materials, 2014, 68: 777–782. doi: 10.1016/j.conbuildmat.2014.06.052
|
[24] |
LIU C X, LI Y L. Effects of temperature and strain-rate on the compressive strength of concrete [J]. Advanced Materials Research, 2011, 168/169/170: 2619–2624.
|
[25] |
XING Z, BEAUCOUR A-L, HEBERT R, et al. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature [J]. Cement and Concrete Research, 2011, 41: 392–402. doi: 10.1016/j.cemconres.2011.01.005
|
[26] |
ZHAI C C, CHEN L, FANG Q, et al. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature [J]. Materials and Structures, 2017, 50: 40. doi: 10.1617/s11527-016-0879-4
|
[27] |
HUO J S, HE Y M, XIAO L P, et al. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 ℃ [J]. Materials and Structures, 2013, 46: 255–265. doi: 10.1617/s11527-012-9899-x
|
[28] |
LI Z W, XU J Y, BAI E L. Static and dynamic mechanical properties of concrete after high temperature exposure [J]. Materials Science and Engineering: A, 2012, 544: 27–32. doi: 10.1016/j.msea.2012.02.058
|
[29] |
JIN L, HAO H M, ZHANG R B, et al. Mesoscale simulation on the effect of elevated temperature on dynamic compressive behavior of steel fiber reinforced concrete [J]. Fire Technology, 2020, 56(4): 1801–1823. doi: 10.1007/s10694-020-00955-5
|
[30] |
LU Y B, LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171–180.
|
[31] |
彭帅, 李亮, 吴俊, 等. 高温条件下钢纤维混凝土动态抗压性能试验研究 [J]. 振动与冲击, 2019, 38(22): 149–154.
PENG S, LI L, WU J, et al. Impact tests on dynamic compressive behaviors of steel fiber reinforced concrete at elevated temperature [J]. Journal of Vibration and Shock, 2019, 38(22): 149–154.
|
[32] |
陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验 [J]. 爆炸与冲击, 2011, 31(1): 101–106.
TAO J L, QIN L B, LI K, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature [J]. Explosion and Shock Waves, 2011, 31(1): 101–106.
|
[33] |
许金余, 刘健, 范飞林, 等. 高温SHPB冲击实验技术及其应用 [J]. 高压物理学报, 2013, 27(1): 57–62. doi: 10.11858/gywlxb.2013.01.008
XU J Y, LIU J, FAN F L, et al. A high temperature SHPB impact experimental technique and its application [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 57–62. doi: 10.11858/gywlxb.2013.01.008
|
[34] |
刘传雄, 李玉龙, 吴子燕, 等. 高温后混凝土材料的动态压缩力学性能 [J]. 土木工程学报, 2011, 44(4): 78–83.
LIU C X, LI Y L, WU Z Y, et al. Dynamic compression behavior of heated concrete [J]. Chinese Civil Engineering Journal, 2011, 44(4): 78–83.
|
[35] |
HUANG R Y, LI S C, MENG L, et al. Coupled effect of temperature and strain rate on mechanical properties of steel fiber-reinforced concrete [J]. International Journal of Concrete Structures and Materials, 2020, 14: 48. doi: 10.1186/s40069-020-00423-y
|
[36] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
|
[37] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[38] |
Eurocode 4: design of composite steel and concrete structures [S]. New Zealand: Manager Structural Systems, Heavy Engineering Research Association, 1994.
|
[39] |
YOUN S, LEE S-B, LEE H-Y, et al. Implementation of thermo-viscoplastic constitutive equations into the finite element code ABAQUS [C]//15th International Conference on Structural Mechanics in Reactors Technology. Seoul, Korea, 1998.
|
[40] |
MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures: ADA173082 [R]. Gainesville: University of Florida, 1985.
|
[41] |
ROSS C A. Crack patterns resulting from high strain-rate tests on concrete: ADA260240 [R]. Florida: Air Base Survivability Branch, 1992.
|
[42] |
ROSS C A, TEDESCO J W, KUENNEN S T. Effects of strain rate on concrete strength [J]. Aci Materials Journal, 1995, 92(1): 37–47.
|
[43] |
LEE S, KIM K-M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. doi: 10.1016/j.ijimpeng.2017.11.015
|
[44] |
LINDHOLM U S. Some experiments in dynamic plasticity under combined stress [M]//Mechanical Behavior of Materials under Dynamic Loads. New York: Springer Verlag, 1968, 77–95.
|
[45] |
CAMPBELL J D, FERGUSON W G. The temperature and strain-rate dependence of the shear strength of mild steel [J]. Philosophical Magazine, 1970, 21: 63–82. doi: 10.1080/14786437008238397
|
[46] |
王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M] 合肥: 中国科学技术大学出版社, 2017: 131.
|
[47] |
YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77.
|
[48] |
ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
|