WU Xiaodong, ZHANG Haiguang, WANG Yu, MENG Xiangsheng. Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
Citation: LI Ping, SUN Chonghui, HUANG Ruiyuan, DUAN Shiwei. The Law of Combined Effect of Rate and Temperature on Compressive Strength of Concrete Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024204. doi: 10.11858/gywlxb.20210825

The Law of Combined Effect of Rate and Temperature on Compressive Strength of Concrete Materials

doi: 10.11858/gywlxb.20210825
  • Received Date: 21 Jun 2021
  • Rev Recd Date: 30 Jun 2021
  • Accepted Date: 02 Dec 2021
  • The dynamic compressive strength of concrete material not only has obvious strain rate strengthening (hardening) effect, but also has obvious temperature weakening (softening) effect. Under the combined condition of strain rate and temperature, there are not only clear strain rate inflection point in the process of compression strength changing with strain rate and temperature, the change of compression strength with strain rate is obviously different before and after the inflection point. Under the same condition, there also are significant differences in the strain rate values corresponding to the inflection points which are existed when the curve bends at different temperatures. Combined with theoretical analysis and references to the compression experimental data of concrete materials under the combined temperature and strain rate condition in recent years, the variation law of the joint effect factor K of concrete compressive strength under different temperatures (T) and different strain rates (˙ε) is discussed. By fitting the experimental data, the prediction expressions of K(T)-˙ε at different strain rates and different temperatures were obtained, and the coupling effects of strain rate hardening and temperature softening on compression strength were determined. The relationship between the inflection point of strain rate and temperature is analyzed, and the combined rate-temperature boundary for strain rate sensitive and strain rate insensitive region is determined. The rate-temperature equivalent equation is established when the rate-temperature effect is equivalent (namely, K=1) and the rate-temperature equivalent parameters of concrete materials are determined.

     

  • [1]
    Comite Euro-International du Beton. Concrete structures under impact and impulsive loading [S]. Bulletin d'Information, Lausanne, 1988.
    [2]
    Comite Euro-International du Beton. CEB-FIP model code 1990 [M]. Lausanne: Committee Euro-International du Beton, 1993.
    [3]
    高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. doi: 10.11858/gywlxb.2017.03.007

    GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. doi: 10.11858/gywlxb.2017.03.007
    [4]
    ACI Committee 349. Code requirements for nuclear safety-related concrete structures (ACI 349-13) & commentary [S]. Farmington Hills, MI: American Concrete Institute, 2013.
    [5]
    ACI Committee 370. Report for the design of concrete structures for blast effects: ACI 370R-2014 [S]. Farmington Hills, MI: American Concrete Institute, 2014.
    [6]
    Fib Commission 8. Code-type models for concrete behaviour: state-of-the-art report 70 [R]. Lausanne: Fib Fédération Internationale du Béton, 2013.
    [7]
    Unified Facilities Criteria (UFC) 3-340-02. Structures to resist the effects of accidental explosions [R]. Washington D C, US: Department of Defense, 2008.
    [8]
    PHAM D-T, VU M-N, TRIEU H T, et al. A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 ℃ of concrete [J]. Fire Safety Journal, 2020, 114: 103011. doi: 10.1016/j.firesaf.2020.103011
    [9]
    AISC. Specification for structural steel buildings: ANSI/AISC 360-10 [S]. Chicago, IL: American Institute of Steel Construction, Inc., 2010.
    [10]
    Eurocode 2: design of concrete structures-part 1-2: general rules—structural fire design: EN 1992-1-2 [S]. Brussels: European Committee for Standardization, 2004.
    [11]
    CHAN Y N, PENG G F, ANSON M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures [J]. Cement and Concrete Composites, 1999, 21: 23–27. doi: 10.1016/S0958-9465(98)00034-1
    [12]
    NOVAK J, KOHOUTKOVA A. Mechanical properties of concrete composites subject to elevated temperature [J]. Fire Safety Journal, 2018, 95: 66–76. doi: 10.1016/j.firesaf.2017.10.010
    [13]
    SESHU D R, PRATUSHA A. Study on compressive strength behaviour of normal concrete and self-compacting concrete subjected to elevated temperatures [J]. Magazine of Concrete Research, 2013, 65(7): 415–421. doi: 10.1680/macr.12.00108
    [14]
    SIDERIS K K. Mechanical characteristics of self-consolidating concrete exposed to elevated temeperatures [J]. ASCE Journal of Materials in Civil Engineering. 2007, 19(8): 648–654.
    [15]
    PERSSON B. Fire resistance of self-compacting concrete [J]. Materials and Structures, 2004, 37: 575–584.
    [16]
    KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures [J]. Cement and Concrete Research, 2011, 41: 1112–1122.
    [17]
    ABRAMS M S. Compressive strength of concrete at temperatures to 1600F [J]. Michigan, USA: ACI Special Publication, 1971, 25: 33–58.
    [18]
    MALHOTRA H L. The effect of temperature on the compressive strength of concrete [J]. Magazine of Concrete Research, 1956, 8(23): 85–94. doi: 10.1680/macr.1956.8.23.85
    [19]
    LIE T T. Structural fire protection [M]. New York: American Society of Civil Engineers, 1992.
    [20]
    CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. doi: 10.1016/j.ijimpeng.2015.07.002
    [21]
    REN W B, XU J Y, SU H Y. Dynamic compressive behaviour of concrete after exposure to elevated temperatures [J]. Materials and Structures, 2016, 49: 3321–3334.
    [22]
    ABRAM D A. Effect of rate of application of load on the compressive strength of concrete [M] . Proceeding of ASTM 17, Part 2, 1917: 364–377.
    [23]
    ZHAI Y, DENG Z C, LI N, et al. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model [J]. Construction and Building Materials, 2014, 68: 777–782. doi: 10.1016/j.conbuildmat.2014.06.052
    [24]
    LIU C X, LI Y L. Effects of temperature and strain-rate on the compressive strength of concrete [J]. Advanced Materials Research, 2011, 168/169/170: 2619–2624.
    [25]
    XING Z, BEAUCOUR A-L, HEBERT R, et al. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature [J]. Cement and Concrete Research, 2011, 41: 392–402. doi: 10.1016/j.cemconres.2011.01.005
    [26]
    ZHAI C C, CHEN L, FANG Q, et al. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature [J]. Materials and Structures, 2017, 50: 40. doi: 10.1617/s11527-016-0879-4
    [27]
    HUO J S, HE Y M, XIAO L P, et al. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 ℃ [J]. Materials and Structures, 2013, 46: 255–265. doi: 10.1617/s11527-012-9899-x
    [28]
    LI Z W, XU J Y, BAI E L. Static and dynamic mechanical properties of concrete after high temperature exposure [J]. Materials Science and Engineering: A, 2012, 544: 27–32. doi: 10.1016/j.msea.2012.02.058
    [29]
    JIN L, HAO H M, ZHANG R B, et al. Mesoscale simulation on the effect of elevated temperature on dynamic compressive behavior of steel fiber reinforced concrete [J]. Fire Technology, 2020, 56(4): 1801–1823. doi: 10.1007/s10694-020-00955-5
    [30]
    LU Y B, LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171–180.
    [31]
    彭帅, 李亮, 吴俊, 等. 高温条件下钢纤维混凝土动态抗压性能试验研究 [J]. 振动与冲击, 2019, 38(22): 149–154.

    PENG S, LI L, WU J, et al. Impact tests on dynamic compressive behaviors of steel fiber reinforced concrete at elevated temperature [J]. Journal of Vibration and Shock, 2019, 38(22): 149–154.
    [32]
    陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验 [J]. 爆炸与冲击, 2011, 31(1): 101–106.

    TAO J L, QIN L B, LI K, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature [J]. Explosion and Shock Waves, 2011, 31(1): 101–106.
    [33]
    许金余, 刘健, 范飞林, 等. 高温SHPB冲击实验技术及其应用 [J]. 高压物理学报, 2013, 27(1): 57–62. doi: 10.11858/gywlxb.2013.01.008

    XU J Y, LIU J, FAN F L, et al. A high temperature SHPB impact experimental technique and its application [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 57–62. doi: 10.11858/gywlxb.2013.01.008
    [34]
    刘传雄, 李玉龙, 吴子燕, 等. 高温后混凝土材料的动态压缩力学性能 [J]. 土木工程学报, 2011, 44(4): 78–83.

    LIU C X, LI Y L, WU Z Y, et al. Dynamic compression behavior of heated concrete [J]. Chinese Civil Engineering Journal, 2011, 44(4): 78–83.
    [35]
    HUANG R Y, LI S C, MENG L, et al. Coupled effect of temperature and strain rate on mechanical properties of steel fiber-reinforced concrete [J]. International Journal of Concrete Structures and Materials, 2020, 14: 48. doi: 10.1186/s40069-020-00423-y
    [36]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [37]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [38]
    Eurocode 4: design of composite steel and concrete structures [S]. New Zealand: Manager Structural Systems, Heavy Engineering Research Association, 1994.
    [39]
    YOUN S, LEE S-B, LEE H-Y, et al. Implementation of thermo-viscoplastic constitutive equations into the finite element code ABAQUS [C]//15th International Conference on Structural Mechanics in Reactors Technology. Seoul, Korea, 1998.
    [40]
    MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures: ADA173082 [R]. Gainesville: University of Florida, 1985.
    [41]
    ROSS C A. Crack patterns resulting from high strain-rate tests on concrete: ADA260240 [R]. Florida: Air Base Survivability Branch, 1992.
    [42]
    ROSS C A, TEDESCO J W, KUENNEN S T. Effects of strain rate on concrete strength [J]. Aci Materials Journal, 1995, 92(1): 37–47.
    [43]
    LEE S, KIM K-M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. doi: 10.1016/j.ijimpeng.2017.11.015
    [44]
    LINDHOLM U S. Some experiments in dynamic plasticity under combined stress [M]//Mechanical Behavior of Materials under Dynamic Loads. New York: Springer Verlag, 1968, 77–95.
    [45]
    CAMPBELL J D, FERGUSON W G. The temperature and strain-rate dependence of the shear strength of mild steel [J]. Philosophical Magazine, 1970, 21: 63–82. doi: 10.1080/14786437008238397
    [46]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M] 合肥: 中国科学技术大学出版社, 2017: 131.
    [47]
    YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77.
    [48]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
  • Relative Articles

    [1]LIU Jiajing, LI Zihao, WANG Zhihua, LIU Zhifang, LI Shiqiang. Hybrid Design of Triply Periodic Minimal Surface Structure and Its Mechanical Behavior under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783
    [2]ZHU Haolin, ZHANG Tianhui, LIU Zhifang. Dynamic Responses of Aluminum Foam Sandwich Shells under Repeated Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721
    [3]HUANG Qiaoqiao, DENG Qingtian, LI Xinbo, CHEN Li. Deformation Mode and Energy Absorption of Modularized Cellular Structures[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737
    [4]KONG Zhicheng, HU Jun, HAO Yingqi. Out-of-Plane Mechanical Behaviors of Intorsion Hierarchical Honeycomb-Like Structures[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014202. doi: 10.11858/gywlxb.20220632
    [5]KONG Zhicheng, HU Jun, LIU Qiqi. Crashworthiness Evaluation of Star-Shaped Hybrid Multi-Cell Tubes under Multiple Impact Angles[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034204. doi: 10.11858/gywlxb.20230627
    [6]XU Hao, LU Chuanhao, LIU Zhifang, ZHANG Tianhui, LEI Jianyin, LI Shiqiang. Design and Mechanical Properties of Star-Shaped Structure with Double Stress Plateaus[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034106. doi: 10.11858/gywlxb.20230614
    [7]LI Chengbing, LI Rui, ZHANG Jitao, YE Qiang, LI Renfu. In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604
    [8]LIU Yingzhi, LEI Jianyin, WANG Zhihua. Dynamic Response of Narce-Like Brick and Mortar Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014202. doi: 10.11858/gywlxb.20210790
    [9]HE Pu, DENG Qingtian, LI Xinbo. Energy Absorption Characteristics of Laminated Cellular Cylindrical Shell under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044203. doi: 10.11858/gywlxb.20210909
    [10]LIAO Fang, LI Shiqiang, WU Guiying. Topological Optimization and Dynamic Response of Periodic Porous Sandwich Structure under Impact Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054201. doi: 10.11858/gywlxb.20220560
    [11]YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
    [12]HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518
    [13]LI Xue, XIAO Lijun, SONG Weidong. Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701
    [14]YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
    [15]FENG Genzhu, YU Boli, LI Shiqiang, LIU Zhifang. Deformation and Energy Absorption of Multi-Hierarchical Sandwich Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
    [16]TIAN Ze, HAN Yang, YIN Xiaowen, XIN Hao, ZHAO Longmao, LI Zhiqiang. Effect of Sectional Geometric Parameters on Axial Impact Response of Hat-Section Beam[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054203. doi: 10.11858/gywlxb.20180521
    [17]XUE Tao, ZHOU Xian-Ming, LI Jia-Bo, ZENG Xiao-Long, YE Su-Hua, HUANG Jin, LI Jun, DAI Cheng-Da. Real-Time Absorption Spectrum Measurements of Deformation-Induced Point Defects in Single Crystal MgO[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 691-698. doi: 10.11858/gywlxb.2014.06.008
    [18]LU Guo-Yun, GUAN Wen-Bo, YANG Hui-Wei, HAN Zhi-Jun, LEI Jian-Ping. Deformation Mode of Hemispherical Shell under Static Load[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002
    [19]ZHANG Xin-Chun, LIU Ying. Effect of Defects in-Plane of Metal Honeycomb on Its Dynamic Impact Properties[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 645-652. doi: 10.11858/gywlxb.2012.06.008
    [20]YAO Xiao-Hu, REN Hui-Lan, LIN Rong, ZHANG Xiao-Qing. Study on Dynamic Mechanical Properties and Energy Absorption of Polymeric Foams[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 531-536. doi: 10.11858/gywlxb.2012.05.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(759) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return