Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
ZHOU Hu, KONG Xiangshao, LIU Fang, ZHENG Cheng. Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821
Citation: ZHOU Hu, KONG Xiangshao, LIU Fang, ZHENG Cheng. Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014205. doi: 10.11858/gywlxb.20210821

Numerical Analysis of Response of Fiber Reinforced Thermoplastic and Metal Laminates Subjected to Explosion in Cabin

doi: 10.11858/gywlxb.20210821
  • Received Date: 18 Jun 2021
  • Rev Recd Date: 04 Sep 2021
  • Accepted Date: 25 Nov 2021
  • Fiber reinforced thermoplastic and metal laminates have received wide attention in the field of naval protection, due to the excellent impact resistance performance. Numerical study on the fiber reinforced thermoplastic and metal laminate was carried out, based on the dynamic response test data of the laminate subjected to blast load in a confined space and the mechanical performance parameters of fiber reinforced thermoplastic calculated by the representative volume element (RVE) method. The validity of the numerical method was verified by comparing the test results with simulation one, and the response law of the laminate was further analyzed by the simulation results. The numerical simulation method of the fiber-reinforced thermoplastic and metal laminates adopted in this paper has a certain significance for the study of the impact resistance of laminates, and provides a feasible idea for the further development of related research.

     

  • loading
  • [1]
    CARRILLO J G, CANTWELL W J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite [J]. Mechanics of Materials, 2009, 41(7): 828–838. doi: 10.1016/j.mechmat.2009.03.002
    [2]
    VLOT A. Impact loading on fibre metal laminates [J]. International Journal of Impact Engineering, 1996, 18(3): 291–307. doi: 10.1016/0734-743X(96)89050-6
    [3]
    VLOT A, KRULL M. Impact damage resistance of various fibre metal laminates [J]. Journal de Physique Ⅳ, 1997, 7(C3): 1045–1050.
    [4]
    KIM H K, PARK E T, SONG W J, et al. Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061-T6 by using electromagnetic launcher [J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1219–1229. doi: 10.1007/s12206-019-0222-4
    [5]
    NAM H W, HWANG W, HAN K S. Stacking sequence design of fiber-metal laminate for maximum strength [J]. Journal of Composite Materials, 2001, 35(18): 1654–1683. doi: 10.1106/7NV4-5J5R-XIUJ-PVXT
    [6]
    MANIKANDAN P, CHAI G B. A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load [J]. Composite Structures, 2014, 117: 17–31. doi: 10.1016/j.compstruct.2014.06.010
    [7]
    ZHANG X, MA Q Y, DAI Y, et al. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy [J]. Applied Surface Science, 2018, 427: 897–906. doi: 10.1016/j.apsusc.2017.09.024
    [8]
    MAJZOOBI G H, MORSHEDI H, FARHADI K. The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs [J]. Thin-Walled Structures, 2018, 122: 1–7. doi: 10.1016/j.tws.2017.10.006
    [9]
    PÄRNÄNEN T, ALDERLIESTEN R, RANS C, et al. Applicability of AZ31B-H24 magnesium in fibre metal laminates-an experimental impact research [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1578–1586. doi: 10.1016/j.compositesa.2012.04.008
    [10]
    CORTES P, CATWELL W J. The impact properties of high-temperature fiber-metal laminates [J]. Journal of Composite Materials, 2007, 41(5): 613–632. doi: 10.1177/0021998306065291
    [11]
    ZHANG D L, ZHANG X Y, LUO Y P, et al. Experimental study on drop-weight impact response of basalt fiber aluminum laminates (BFMLs) [J]. Advances in Materials Science and Engineering, 2018: 1478951.
    [12]
    SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies [J]. Composite Structures, 2012, 94(8): 2585–2598. doi: 10.1016/j.compstruct.2012.03.004
    [13]
    SEYED YAGHOUBI A, LIAW B. Experimental and numerical investigations of stacking sequence effect on glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012.
    [14]
    SEYED YAGHOUBI A, LIAW B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams [J]. International Journal of Impact Engineering, 2013, 54: 138–148. doi: 10.1016/j.ijimpeng.2012.10.007
    [15]
    SEYED YAGHOUBI A, LIAW B. An experimental and numerical investigation of thickness effect on cross-ply glare 5 fml plates subjected to ballistic impact [C]//2012 International Mechanical Engineering Congress and Exposition. Houston, Texas: American Society of Mechanical Engineers, 2012.
    [16]
    SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅱ –numerical studies [J]. Journal of Composite Materials, 2014, 48(19): 2363–2374. doi: 10.1177/0021998313498104
    [17]
    SEYED YAGHOUBI A, LIAW B. Influences of thickness and stacking sequence on ballistic impact behaviors of GLARE 5 FML plates: part Ⅰ –experimental studies [J]. Journal of Composite Materials, 2014, 48(16): 2011–2021. doi: 10.1177/0021998313494097
    [18]
    SONG S H, KU T W, KIM J, et al. Investigation on the equivalent material property of carbon reinforced aluminum laminates [J]. International Journal of Modern Physics B, 2008, 22(31/32): 6149–6154.
    [19]
    GONZALEZ-CANCHE N G, FLORES-JOHNSON E A, CARRILLO J G. Mechanical characterization of fiber metal laminate based on aramid fiber reinforced polypropylene [J]. Composite Structures, 2017, 172: 259–266. doi: 10.1016/j.compstruct.2017.02.100
    [20]
    REYES V G, CANTWELL W J. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene [J]. Composites Science and Technology, 2000, 60(7): 1085–1094. doi: 10.1016/S0266-3538(00)00002-6
    [21]
    SANTIAGO R C, CANTWELL W J, JONES N, et al. The modelling of impact loading on thermoplastic fibre-metal laminates [J]. Composite Structures, 2018, 189: 228–238. doi: 10.1016/j.compstruct.2018.01.052
    [22]
    EDRI I, SAVIR Z, FELDGUN V, et al. On blast pressure analysis due to a partially confined explosion: Ⅰ . experimental studies [J]. International Journal of Protective Structures, 2011, 2(1): 1–20. doi: 10.1260/2041-4196.2.1.1
    [23]
    HU Y, WU C Q, LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–44. doi: 10.1260/2041-4196.2.1.21
    [24]
    孔祥韶, 徐敬博, 徐维铮. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 130–137.

    KONG X S, XU J B, XU W Z. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 130–137.
    [25]
    FAN J Y, GUAN Z W, CANTWELL W J. Structural behaviour of fibre metal laminates subjected to a low velocity impact [J]. Science China: Physics Mechanics and Astronomy, 2011, 54(6): 1168–1177.
    [26]
    VLOT A. Impact properties of fiber metal laminates [J]. Composites Engineering, 1993, 3(10): 911–927. doi: 10.1016/0961-9526(93)90001-Z
    [27]
    SEYED YAGHOUBI A, LIU Y, LIAW B. Low-velocity impact on GLARE 5 fiber-metal laminates: influences of specimen thickness and impactor mass [J]. Journal of Aerospace Engineering, 2012, 25(3): 409–420. doi: 10.1061/(ASCE)AS.1943-5525.0000134
    [28]
    SITNIKOVA E, GUAN Z W, CANTWELL W J. The analysis of the ultimate blast failure modes in fibre metal laminates [J]. Composites Science and Technology, 2016, 135: 1–12.
    [29]
    VO T P, GUAN Z W, CANTWELL W J, et al. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys [J]. Composites Part B: Engineering, 2013, 44(1): 141–151. doi: 10.1016/j.compositesb.2012.06.013
    [30]
    VO T P, GUAN Z W, CANTWELL W J, et al. Low-impulse blast behaviour of fibre-metal laminates [J]. Composite Structures, 2012, 94(3): 954–965. doi: 10.1016/j.compstruct.2011.10.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(11)

    Article Metrics

    Article views(719) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return