Volume 36 Issue 2
Apr 2022
Turn off MathJax
Article Contents
WU Xingliang, WANG Xu, XU Feiyang, MA Teng, DONG Zhuochao, XU Sen, LIU Dabin. Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818
Citation: WU Xingliang, WANG Xu, XU Feiyang, MA Teng, DONG Zhuochao, XU Sen, LIU Dabin. Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025103. doi: 10.11858/gywlxb.20210818

Energy Output Characteristics and Evaluation Method of Poly-Black Aluminum Explosive

doi: 10.11858/gywlxb.20210818
  • Received Date: 18 Jun 2021
  • Rev Recd Date: 07 Jul 2021
  • In order to study the energy output characteristics of the RDX-based aluminum explosive (JHL-X) and its energy level evaluation method, the explosion heat value and underwater explosion of JHL-X were tested through adiabatic calorimeter, underwater explosion system, and air blast system. Energy, ground overpressure. The results show that the explosion heat value of JHL-X in vacuum is basically the same as that in N2, about is 1.75 times TNT equivalent; the explosion heat value in air is 8045.724 J/g, 1.93 times TNT equivalent, which is 10% higher than vacuum and N2. The shock wave energy and bubble energy of JHL-X in an underwater explosion are 0.935 and 4.614 kJ/g, and the total energy is 1.83 times TNT equivalent. In an air blast, the TNT and JHL-X overpressure formulas derived from ground overpressure show that the TNT equivalents at 1.5, 2.0, and 2.5 m are 2.14, 1.70, and 1.75 times, respectively, and the average value is 1.86 times. In addition, the underwater explosion and the explosion heat in vacuum are not provided with oxygen from the external environment, so that the two experiment methods maintain consistency when evaluating the energy level of JHL-X explosives. The air blast and explosion heat in the air have oxygen supply from the external environment, which causes reaction of Al in the aluminum-containing explosive to increase, so the total energy increased, results of these two experiments are similar. Therefore, when evaluating the energy level of explosives, it is necessary to consider the explosive formulation design and practical use, then select different evaluation methods.

     

  • loading
  • [1]
    MEYER R, KÖHLER J, HOMBURG A. Explosives [M]. Hoboken, NJ: John Wiley & Sons, 2016.
    [2]
    FORDHAM S. High explosives and propellants [M]. Amsterdam: Elsevier, 2013.
    [3]
    KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin, Heidelberg: Springer Science & Business Media, 2013.
    [4]
    SUCESKA M. Test methods for explosives [M]. Berlin, Heidelberg: Springer Science & Business Media, 2012.
    [5]
    TRZCIŃSKI W A, CUDZIŁO S, PASZULA J. Studies of free field and confined explosions of aluminium enriched RDX compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 502–508. doi: 10.1002/prep.200700202
    [6]
    CUDZIŁO S, TRZCIŃSKI W A, PASZULA J, et al. Effect of titanium and zirconium hydrides on the detonation heat of RDX-based explosives: a comparison to aluminium [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 280–285. doi: 10.1002/prep.201700237
    [7]
    XIANG D L, RONG J L, HE X. Detonation performance of four groups of aluminized explosives [J]. Central European Journal of Energetic Materials, 2016, 13(4): 903–915.
    [8]
    BJARNHOLT G, HOLMBERG R. Explosives expansion works in underwater detonations [C]//6th Symposium on Detonation. San Diego, CA, 1976: 540−550.
    [9]
    COLE R H. Underwater explosions [M]. New York: Dover Publications, 1965.
    [10]
    牟金磊, 朱锡, 李海涛, 等. 炸药水下爆炸能量输出特性试验研究 [J]. 高压物理学报, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002

    MU J L, ZHU X, LI H T, et al. Experimental research on underwater explosion energy output of explosive [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 88–92. doi: 10.3969/j.issn.1000-5773.2010.02.002
    [11]
    ZHAO Q, NIE J X, WANG Q S, et al. Numerical and experimental study on cyclotrimethylenetrinitramine/aluminum explosives in underwater explosions [J]. Advances in Mechanical Engineering, 2016, 8(10): 1–10.
    [12]
    冯凇, 饶国宁, 彭金华. CL-20基含铝炸药水下爆炸实验研究与数值模拟 [J]. 含能材料, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376

    FENG S, RAO G N, PENG J H. Experimental study and numerical simulation of CL-20-based aluminized explosive in underwater explosion [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 686–695. doi: 10.11943/CJEM2017376
    [13]
    XIAO W, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. doi: 10.1016/j.jhazmat.2019.05.078
    [14]
    LI X L, CAO W, SONG Q G, et al. Study on energy output characteristics of explosives containing B/Al in the air blast [J]. Combustion, Explosion, and Shock Waves, 2019, 55(6): 723–731. doi: 10.1134/S0010508219060145
    [15]
    XU S, CHEN Y, CHEN X, et al. Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 342–349. doi: 10.1134/S001050821603014X
    [16]
    CHEN Y, CHEN X, WU D, et al. Underwater explosion analysis of hexogen-enriched novel hydrogen storage alloy [J]. Journal of Energetic Materials, 2016, 34(1): 49–61. doi: 10.1080/07370652.2014.996271
    [17]
    MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. MRS Online Proceedings Library Archive, 1995, 418: 413–420.
    [18]
    YEN N H, WANG L Y. Reactive metals in explosives [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 143–155. doi: 10.1002/prep.200900050
    [19]
    XIANG D L, RONG J L, LI J. Effect of Al/O ratio on the detonation performance and underwater explosion of HMX-based aluminized explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1): 65–73. doi: 10.1002/prep.201300026
    [20]
    BEN-DOR G, IVANOV M, VASILEV E I, et al. Hysteresis processes in the regular reflection Mach reflection transition in steady flows [J]. Progress in Aerospace Sciences, 2002, 38(4/5): 347–387.
    [21]
    COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves [M]. Berlin, Heidelberg: Springer Science & Business Media, 1948.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(1087) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return