Citation: | YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Crashworthiness Analysis of New Bionic Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204. doi: 10.11858/gywlxb.20210817 |
[1] |
AKTAY L, JOHNSON A F, KRÖPLIN B H. Numerical modelling of honeycomb core crush behaviour [J]. Engineering Fracture Mechanics, 2008, 75(9): 2616–2630. doi: 10.1016/j.engfracmech.2007.03.008
|
[2] |
LI Z J, YANG Q S, FANG R, et al. Crushing performances of Kirigami modified honeycomb structure in three axial directions [J]. Thin-Walled Structures, 2021, 160: 107365. doi: 10.1016/j.tws.2020.107365
|
[3] |
ASHAB A, RUAN D, LU G X, et al. Combined compression-shear behavior of aluminum honeycombs [J]. Key Engineering Materials, 2014, 626: 127–132. doi: 10.4028/www.scientific.net/KEM.626.127
|
[4] |
XU S Q, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs [J]. Composite Structures, 2012, 94(8): 2326–2336. doi: 10.1016/j.compstruct.2012.02.024
|
[5] |
MOUSANEZHAD D, GHOSH R, AJDARI A, et al. Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening [J]. International Journal of Mechanical Sciences, 2014, 89: 413–422. doi: 10.1016/j.ijmecsci.2014.10.012
|
[6] |
夏元明, 张威, 崔天宁, 等. 金属多级类蜂窝的压溃行为研究 [J]. 力学学报, 2019, 51(3): 873–883. doi: 10.6052/0459-1879-18-434
XIA Y M, ZHANG W, CUI T N, et al. Investigation on crushing behavior of metal honeycomb-like hierarchical structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 873–883. doi: 10.6052/0459-1879-18-434
|
[7] |
王海任, 李世强, 刘志芳, 等. 王莲仿生梯度蜂窝的面外压缩行为 [J]. 高压物理学报, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
WANG H R, LI S Q, LIU Z F, et al. Out-of-plane compression performance of gradient honeycomb inspired by royal water lily [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
|
[8] |
樊喜刚, 尹西岳, 陶勇, 等. 梯度蜂窝面外动态压缩力学行为与吸能特性研究 [J]. 固体力学学报, 2015, 36(2): 114–122.
FAN X G, YIN X Y, TAO Y, et al. Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 114–122.
|
[9] |
XIANG J W, DU J X. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading [J]. Materials Science and Engineering: A, 2017, 696: 283–289. doi: 10.1016/j.msea.2017.04.044
|
[10] |
HE Q, WANG Y H, GU H, et al. Dynamic crushing analysis of a circular honeycomb with leaf vein branched characteristic [J]. Mechanics of Materials, 2021, 153: 103566. doi: 10.1016/j.mechmat.2020.103566
|
[11] |
YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. doi: 10.1016/j.tws.2018.01.014
|
[12] |
HE Q, FENG J, CHEN Y J, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading [J]. Journal of Sandwich Structures and Materials, 2020, 22(3): 771–796.
|
[13] |
YANG X F, XI X L, PAN Q F, et al. In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure [J]. Composite Structures, 2019, 226: 111219. doi: 10.1016/j.compstruct.2019.111219
|
[14] |
ZHANG D H, FEI Q G, ZHANG P W. In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells [J]. Thin-Walled Structures, 2017, 117: 199–210. doi: 10.1016/j.tws.2017.03.028
|
[15] |
ZHANG Y, LU M H, WANG C H, et al. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs [J]. Composite Structures, 2016, 144: 1–13. doi: 10.1016/j.compstruct.2016.02.014
|
[16] |
YIN H F, HUANG X F, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs [J]. Composite Structures, 2018, 192: 516–527. doi: 10.1016/j.compstruct.2018.03.050
|
[17] |
QIAO J X, CHEN C Q. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids and Structures, 2016, 85/86: 57–66. doi: 10.1016/j.ijsolstr.2016.02.003
|
[18] |
ZHANG X, ZHANG H, WEN Z Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations [J]. International Journal of Impact Engineering, 2014, 66: 48–59. doi: 10.1016/j.ijimpeng.2013.12.009
|
[19] |
CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. doi: 10.1016/j.ijimpeng.2018.01.005
|
[20] |
WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
|
[21] |
ZHANG X, ZHANG H. Axial crushing of circular multi-cell columns [J]. International Journal of Impact Engineering, 2014, 65: 110–125. doi: 10.1016/j.ijimpeng.2013.12.002
|
[22] |
TRAN T, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
|
[23] |
ZHANG Y, XU X, WANG J, et al. Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load [J]. International Journal of Mechanical Sciences, 2018, 140: 407–431. doi: 10.1016/j.ijmecsci.2018.03.015
|