Volume 36 Issue 2
Apr 2022
Turn off MathJax
Article Contents
LI Mengshen, GE Tao, CHENG Wenpin, PEI Guoqing. A Comparative Study on the Finite Element Models for Projectiles Perforation into Reinforced Concrete Slabs[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024206. doi: 10.11858/gywlxb.20210816
Citation: LI Mengshen, GE Tao, CHENG Wenpin, PEI Guoqing. A Comparative Study on the Finite Element Models for Projectiles Perforation into Reinforced Concrete Slabs[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024206. doi: 10.11858/gywlxb.20210816

A Comparative Study on the Finite Element Models for Projectiles Perforation into Reinforced Concrete Slabs

doi: 10.11858/gywlxb.20210816
  • Received Date: 18 Jun 2021
  • Rev Recd Date: 09 Aug 2021
  • Accepted Date: 30 Sep 2022
  • In order to study the rebar effect on perforation into concrete targets, the equivalent mixture model of reinforced concrete is established based on the mixture theory. Meanwhile, the model of steel equivalent to steel plate and the plain concrete slab model are given. The residual velocities, the pressure fields and perforation processes for the two models are compared. The results show that the equivalent reinforced concrete mixture model based on mixture theory can better reflect the rebar effect during the penetration, which can not only meet the calculation accuracy, but also simplify the modeling process and improve the calculation efficiency. It is an effective simplified method for numerical analysis of penetration. The distribution of rebar near the free surface of reinforced concrete slab can improve the resistance of target to projectile, but its role is limited.

     

  • loading
  • [1]
    RIERA J D. Penetration, scabbing and perforation of concrete structures hit by solid missiles [J]. Nuclear Engineering and Design, 1989, 115(1): 121–131. doi: 10.1016/0029-5493(89)90265-3
    [2]
    BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
    [3]
    DANCYGIER A N. Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact [J]. Nuclear Engineering and Design, 1997, 172(1/2): 233–245. doi: 10.1016/S0029-5493(97)00055-1
    [4]
    REID S R, WEN H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles [R]. UK: University of Manchester Institute of Science and Technology, 2001.
    [5]
    欧阳春, 赵国志, 杜中华, 等. 弹丸垂直侵彻钢筋混凝土介质的工程解析模型 [J]. 爆炸与冲击, 2004, 24(3): 273–277. doi: 10.3321/j.issn:1001-1455.2004.03.013

    OUYANG C, ZHAO G Z, DU Z H, et al. An engineering analytical model for projectiles to penetrate normally into semi-infinite reinforced concrete targets [J]. Explosion and Shock Waves, 2004, 24(3): 273–277. doi: 10.3321/j.issn:1001-1455.2004.03.013
    [6]
    任辉启, 何翔, 刘瑞朝, 等. 弹体侵彻混凝土过载特性研究 [J]. 土木工程学报, 2005, 38(1): 110–116. doi: 10.3321/j.issn:1000-131X.2005.01.015

    REN H Q, HE X, LIU R C, et al. A study on the overload characteristics of projectile penetrating concrete [J]. China Civil Engineering Journal, 2005, 38(1): 110–116. doi: 10.3321/j.issn:1000-131X.2005.01.015
    [7]
    陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351. doi: 10.3321/j.issn:1000-0992.2009.03.006

    CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351. doi: 10.3321/j.issn:1000-0992.2009.03.006
    [8]
    邓勇军, 宋文杰, 陈小伟, 等. 钢筋混凝土靶侵彻的可压缩弹-塑性动态空腔膨胀阻力模型 [J]. 爆炸与冲击, 2018, 38(5): 1023–1030. doi: 10.11883/bzycj-2017-0043

    DENG Y J, SONG W J, CHEN X W, et al. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets [J]. Explosion and Shock Waves, 2018, 38(5): 1023–1030. doi: 10.11883/bzycj-2017-0043
    [9]
    邓勇军, 陈小伟, 姚勇. 钢筋混凝土靶侵彻过程中空腔膨胀响应分区研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024606. doi: 10.1360/SSPMA-2019-0184

    DENG Y J, CHEN X W, YAO Y. Study on the cavity expansion response of the concrete target under penetration [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024606. doi: 10.1360/SSPMA-2019-0184
    [10]
    BELOV N N, KOPANITSA D G, KUMPYAK O K. Calculation of reinforced concrete structures under explosive and impact loading [M]. Russian: STT, 2004: 241−245.
    [11]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. doi: 10.1016/S0734-743X(97)00023-7
    [12]
    LUCCIONI B M, ARÁOZ G F, LABANDA N A. Defining erosion limit for concrete [J]. International Journal of Protective Structures, 2013, 4(3): 315–340. doi: 10.1260/2041-4196.4.3.315
    [13]
    王明洋, 邓宏见, 钱七虎. 岩石中侵彻与爆炸作用的近区问题研究 [J]. 岩石力学与工程学报, 2005, 24(6): 2859–2863. doi: 10.3321/j.issn:1000-6915.2005.16.008

    WANG M Y, DENG H J, QIAN Q H. Study on problems of near cavity of penetration and explosion in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 2859–2863. doi: 10.3321/j.issn:1000-6915.2005.16.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(1179) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return