Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
Citation: WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807

Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load

doi: 10.11858/gywlxb.20210807
  • Received Date: 04 Jun 2021
  • Rev Recd Date: 18 Jun 2021
  • Based on the Hashin 3D failure criteria, both stiffness degradation and interface delamination are adopted to model the damage evolution of the composites, a numerical study on the composite lattice sandwich and its foam-reinforce sandwich beams subjected to local impulsive load is performed to identify the effects of impulsive intensity and foam reinforcement on the dynamic response, failure modes, and energy absorption mechanisms. The numerical result is confirmed to have a great agreement with the previously experimental results. The results show the impact strength has a significant influence on the dynamic response, failure mode, and energy dissipation mechanisms of the beams. With the reinforcement of the foam, the composite sandwich beam undergoes a slower deformed response than the lattice sandwich beam, especially for the intensive loads. The compression and cracking of the foam core reduces the degree of failure and keeps the structural integrity, and at the same time effectively decreases the energy absorption ratio of other components, indicating a noticeable improvement of impact resistance of the foam-reinforce composite lattice sandwich beam to concentrated impact load.

     

  • loading
  • [1]
    熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展 [J]. 宇航学报, 2020, 41(6): 749–760.

    XIONG J, DU Y T, YANG W, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures [J]. Journal of Astronautics, 2020, 41(6): 749–760.
    [2]
    FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109
    [3]
    FLECK N A, DESHPANDE V S, ASHBY M F. Micro-architectured materials: past, present and future [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 466(2121): 2495–2516.
    [4]
    YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels [J]. Composites Science and Technology, 2017, 147(28): 89–99.
    [5]
    XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting [J]. Acta Materialia, 2012, 60(13/14): 5322–5334. doi: 10.1016/j.actamat.2012.06.004
    [6]
    MEI J, LIU J, LIU J. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel [J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 28–39. doi: 10.1016/j.compositesa.2017.07.020
    [7]
    MEI J, TAN P J, LIU J, et al. Moisture absorption characteristics and mechanical degradation of composite lattice truss core sandwich panel in a hygrothermal environment [J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105647. doi: 10.1016/j.compositesa.2019.105647
    [8]
    XU G D, ZHAI J J, TA Z, et al. Response of composite sandwich beams with graded lattice core [J]. Composite Structures, 2015, 119: 666–676. doi: 10.1016/j.compstruct.2014.09.042
    [9]
    ZHANG J, YE Y, QIN Q, et al. Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets [J]. Composites Science and Technology, 2018, 168(10): 152–159.
    [10]
    ZHANG J, QIN Q, XIANG C, et al. A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams [J]. International Journal of Impact Engineering, 2016, 96: 35–49. doi: 10.1016/j.ijimpeng.2016.05.011
    [11]
    ZHANG J, QIN Q, XIANG C, et al. Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact [J]. Composite Structures, 2016, 153: 614–623. doi: 10.1016/j.compstruct.2016.06.059
    [12]
    ZHANG G, MA L, WANG B, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores [J]. Composites Part B: Engineering, 2012, 43(2): 471–476. doi: 10.1016/j.compositesb.2011.11.017
    [13]
    ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels [J]. Composite Structures, 2014, 108: 304–310. doi: 10.1016/j.compstruct.2013.09.040
    [14]
    HUANG W, FAN Z, ZHANG W, et al. Impulsive response of composite sandwich structure with tetrahedral truss core [J]. Composites Science and Technology, 2019, 176: 17–28. doi: 10.1016/j.compscitech.2019.03.020
    [15]
    HUANG C, LEE Y. Quasi-static simulation of composite-laminated shells subjected to low-velocity impact [J]. Journal of Reinforced Plastics and Composites, 2005, 24(7): 763–774. doi: 10.1177/0731684405046613
    [16]
    XIAO J R, GAAM B A, GILLESPIE J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. doi: 10.1016/j.compstruct.2005.09.001
    [17]
    DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(886) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return