Citation: | WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807 |
[1] |
熊健, 杜昀桐, 杨雯, 等. 轻质复合材料夹芯结构设计及力学性能最新进展 [J]. 宇航学报, 2020, 41(6): 749–760.
XIONG J, DU Y T, YANG W, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures [J]. Journal of Astronautics, 2020, 41(6): 749–760.
|
[2] |
FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109
|
[3] |
FLECK N A, DESHPANDE V S, ASHBY M F. Micro-architectured materials: past, present and future [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 466(2121): 2495–2516.
|
[4] |
YANG J S, MA L, CHAVES-VARGAS M, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels [J]. Composites Science and Technology, 2017, 147(28): 89–99.
|
[5] |
XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting [J]. Acta Materialia, 2012, 60(13/14): 5322–5334. doi: 10.1016/j.actamat.2012.06.004
|
[6] |
MEI J, LIU J, LIU J. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel [J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 28–39. doi: 10.1016/j.compositesa.2017.07.020
|
[7] |
MEI J, TAN P J, LIU J, et al. Moisture absorption characteristics and mechanical degradation of composite lattice truss core sandwich panel in a hygrothermal environment [J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105647. doi: 10.1016/j.compositesa.2019.105647
|
[8] |
XU G D, ZHAI J J, TA Z, et al. Response of composite sandwich beams with graded lattice core [J]. Composite Structures, 2015, 119: 666–676. doi: 10.1016/j.compstruct.2014.09.042
|
[9] |
ZHANG J, YE Y, QIN Q, et al. Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets [J]. Composites Science and Technology, 2018, 168(10): 152–159.
|
[10] |
ZHANG J, QIN Q, XIANG C, et al. A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams [J]. International Journal of Impact Engineering, 2016, 96: 35–49. doi: 10.1016/j.ijimpeng.2016.05.011
|
[11] |
ZHANG J, QIN Q, XIANG C, et al. Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact [J]. Composite Structures, 2016, 153: 614–623. doi: 10.1016/j.compstruct.2016.06.059
|
[12] |
ZHANG G, MA L, WANG B, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores [J]. Composites Part B: Engineering, 2012, 43(2): 471–476. doi: 10.1016/j.compositesb.2011.11.017
|
[13] |
ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels [J]. Composite Structures, 2014, 108: 304–310. doi: 10.1016/j.compstruct.2013.09.040
|
[14] |
HUANG W, FAN Z, ZHANG W, et al. Impulsive response of composite sandwich structure with tetrahedral truss core [J]. Composites Science and Technology, 2019, 176: 17–28. doi: 10.1016/j.compscitech.2019.03.020
|
[15] |
HUANG C, LEE Y. Quasi-static simulation of composite-laminated shells subjected to low-velocity impact [J]. Journal of Reinforced Plastics and Composites, 2005, 24(7): 763–774. doi: 10.1177/0731684405046613
|
[16] |
XIAO J R, GAAM B A, GILLESPIE J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. doi: 10.1016/j.compstruct.2005.09.001
|
[17] |
DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283.
|