Citation: | ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1− |
[1] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
|
[2] |
HAN C, LI Z, LU G Q, et al. Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures [J]. Nano Energy, 2015, 15: 193–204. doi: 10.1016/j.nanoen.2015.04.024
|
[3] |
ZHAO L D, ZHANG X, WU H J, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe [J]. Journal of the American Chemical Society, 2016, 138(7): 2366–2373. doi: 10.1021/jacs.5b13276
|
[4] |
MASEK J, NUZHNYJ D N. Changes of electronic structure of SnTe due to high concentration of Sn vacancies [J]. Acta Physica Polonica, 1997, 92(5): 915–918. doi: 10.12693/APhysPolA.92.915
|
[5] |
ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band [J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20741–20748. doi: 10.1039/C4CP02091J
|
[6] |
TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering [J]. Chemistry of Materials, 2015, 27(22): 7801–7811. doi: 10.1021/acs.chemmater.5b03708
|
[7] |
LI W, WU Y, LIN S, et al. Advances in environment-friendly SnTe thermoelectrics [J]. ACS Energy Letters, 2017, 2(10): 2349–2355. doi: 10.1021/acsenergylett.7b00658
|
[8] |
PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys & Compounds, 2012, 514: 40–44.
|
[9] |
BANIK A, BISWAS K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization [J]. Journal of Solid State Chemistry, 2016, 242: 43–49. doi: 10.1016/j.jssc.2016.02.012
|
[10] |
TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. [J]. Journal of the American Chemical Society, 2014, 136(19): 7006–7017. doi: 10.1021/ja500860m
|
[11] |
TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg) [J]. Physical Chemistry Chemical Physics, 2016, 18(10): 7141–7147. doi: 10.1039/C5CP07620J
|
[12] |
ORABI R A R A, HWANG J, LIN C C, et al. Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials [J]. Chemistry of Materials, 2017, 29(2): 612–620.
|
[13] |
BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chemistry of Materials, 2015, 27(2): 581–587. doi: 10.1021/cm504112m
|
[14] |
ZHAO L D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy and Environmental Science, 2013, 6(11): 3346–3355. doi: 10.1039/c3ee42187b
|
[15] |
KORRINGA J, GERRITSEN A N. The cooperative electron phenomenon in dilute alloys [J]. Physica, 1953, 19(1): 457–507. doi: 10.1016/S0031-8914(53)80053-4
|
[16] |
KULBACHINSKII V, BRANDT N, CHEREMNYKH P, et al. Magnetoresistance and hall effect in Bi2Te3(Sn) in ultrahigh magnetic fields and under pressure [J]. Physica Status Solidi (B), 2010, 150(1): 237–243.
|
[17] |
ZHANG Q, CAO F, LIU W S, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1- ySey [J]. Journal of the American Chemical Society, 2012, 134(24): 10031–10038. doi: 10.1021/ja301245b
|
[18] |
ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe [J]. Proceedings of the National Academy of Sciences, 2013, 110(33): 13261–13266. doi: 10.1073/pnas.1305735110
|
[19] |
WU H J, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe [J]. Energy & Environmental Science, 2015, 8(11): 3298–3312.
|
[20] |
PEI Y Z, ZHENG L L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe [J]. Advanced Electronic Materials, 2016, 2(6): 1600019. doi: 10.1002/aelm.201600019
|
[21] |
VINEIS C J, SHAKOURI A, MAJUMDAR A, et al. Nanostructured thermoelectrics: big efficiency gains from small features [J]. Advanced Materials, 2010, 22(36): 3970–3980. doi: 10.1002/adma.201000839
|
[22] |
TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence [J]. Journal of the American Chemical Society, 2015, 137(15): 5100–5112. doi: 10.1021/jacs.5b00837
|
[23] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
[24] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868.
|
[25] |
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
|
[26] |
TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe [J]. Journal of the American Chemical Society, 2015, 137(15): 11507–11516.
|
[27] |
HE J, TAN X J, XU J T, et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method [J]. Journal of Materials Chemistry A, 2015, 3(39): 19974–19979. doi: 10.1039/C5TA05535K
|
[28] |
FU T Z, XIN J Z, ZHU T J, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying [J]. Science Bulletin, 2019, 64(14): 1024–1030.
|
[29] |
NSHIMYIMANA E, SU X L, XIE H Y, et al. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe [J]. Science Bulletin, 2018, 63(11): 717–725. doi: 10.1016/j.scib.2018.04.012
|
[1] | SUN Jiacheng, CHEN Xiping, XIE Lei, FANG Leiming. Application of the High-Pressure Neutron Diffractometer at CMRR in Materials Research[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030111. doi: 10.11858/gywlxb.20230790 |
[2] | ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617 |
[3] | HAN Pengju, HU Meihua, BI Ning, WANG Yueyue, ZHOU Xubiao, LI Shangsheng. Enhanced Thermoelectric Performance of P-Doped Silicon-Germanium Alloys Synthesized by High-Pressure Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061101. doi: 10.11858/gywlxb.20220601 |
[4] | PEI Shenghai, DENG Qingyang, WANG Zenghui, XIA Juan. Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741 |
[5] | XIAO Guanjun, ZOU Bo. Optical Tuning of Low-Dimensional Materials under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 010201. doi: 10.11858/gywlxb.20200644 |
[6] | YANG Manman, ZHU Hongyu, LI Hongtao, FAN Haotian, HU Qiang, HU Meihua, LI Shangsheng, SU Taichao. Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011102. doi: 10.11858/gywlxb.20180597 |
[7] | LI Dong-Fei, ZHANG Ke-Wei, LI Zuo-Wei, LIU Cheng-Zhi, GUO Rui, SUN Cheng-Lin, LI Hai-Bo. High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004 |
[8] | LI Hong-Tao, ZHANG Ji-Dong, XU Ling-Yun, ZHU Zhi-Xiu, ZHI Hui-Bo, WANG Biao, FAN Hao-Tian, SU Tai-Chao. Thermoelectric Properties of P-Type PbTe Prepared by High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 448-452. doi: 10.11858/gywlxb.2016.06.002 |
[9] | SU Tai-Chao, XU An-Tao, LI Hong-Tao, LI Shang-Sheng, FAN Hao-Tian, MA Hong-An, JIA Xiao-Peng. Electrical Transport Properties of PbSe Prepared by High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 495-499. doi: 10.11858/gywlxb.2013.04.004 |
[10] | ZHANG Xiang-Guo, MU Xin, ZHANG Zeng-Ming, DING Ze-Jun. Thermoelectric Properties of Nanoparticle PbTe under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004 |
[11] | SU Tai-Chao, ZHANG Shu-Guang, LI Xiao-Lei, MA Hong-An, LI Shang-Sheng, JIA Xiao-Peng, . Thermoelectric Properties of AgSbTe2-Sb2Te3 Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 317-320 . doi: 10.11858/gywlxb.2011.04.005 |
[12] | SU Tai-Chao, ZHU Hong-Yu, LI Hong-Tao, LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, JIA Xiao-Peng. Electrical Properties of Thermoelectric Material of PbTe1-xSex Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 247-250 . doi: 10.11858/gywlxb.2011.03.009 |
[13] | SUN Zhen-Ya, WANG Shuo, DENG Yun-Di, LI Ming-Fa. Effects of High Pressure Treatment on Structures and Luminescence Properties of Nano ZnO and Composite ZnO/SnO2 Materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 299-304 . doi: 10.11858/gywlxb.2009.04.010 |
[14] | DONG Nan, JIA Xiao-Peng, SU Tai-Chao, JIANG Yi-Ping, GUO Jian-Gang, DENG Le, MA Hong-An. Synthesis and Electric Transport Properties of Na-Filled CoSb3 at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 42-45 . doi: 10.11858/gywlxb.2009.01.007 |
[15] | JIANG Yi-Ping, JIA Xiao-Peng, MA Hong-An, SU Tai-Chao, DONG Nan, DENG Le. High Pressure Synthesis and Electric Transport Properties of La Filled CoSb3 Skutterudite Thermoelectric Materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 87-90 . doi: 10.11858/gywlxb.2009.02.002 |
[16] | SU Tai-Chao, ZHU Pin-Wen, MA Hong-An, REN Guo-Zhong, GUO Jian-Gang, IMAI Yoshio, JIA Xiao-Peng. Thermoelectric Properties of N-PbTe Doped with Sb2Te3 Prepared by High-Pressure and High-Temperature[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 55-58 . doi: 10.11858/gywlxb.2007.01.009 |
[17] | ZHU Pin-Wen, JIA Xiao-Peng, CHEN Hai-Yong, CHEN Li-Xue, LI Dong-Mei, GUO Wei-Li, MA Hong-An, REN Guo-Zhong, ZOU Guang-Tian. PbTe Syntheses by High-Pressure and High-Temperature Approach[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 183-187 . doi: 10.11858/gywlxb.2002.03.004 |
[18] | LIU Hao-Zhe, HE Hong-Liang, WANG Lu-Hong, WANG Ai-Min, JIN Chang-Qing. Synthesis of SiCp/Al Nanocomposite under Ultra-High Pressure[J]. Chinese Journal of High Pressure Physics, 1999, 13(1): 1-6 . doi: 10.11858/gywlxb.1999.01.001 |
[19] | LIU Xiao-Yang, SU Wen-Hui, SUN Jia-Yue, PANG Wen-Qin. The Influence of High Pressures on the Luminescence of Ion Exchanged Eu(Ⅲ)NaA and Eu(Ⅲ)NaY Zeolite[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 285-290 . doi: 10.11858/gywlxb.1992.04.007 |
[20] | WANG Gui-Chao. An Empirical Expression of Elastic Sound Speed of Materials at High Pressures[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 92-95 . doi: 10.11858/gywlxb.1988.01.014 |