Volume 36 Issue 1
Jan 2022
Turn off MathJax
Article Contents
ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805
Citation: ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011102. doi: 10.11858/gywlxb.20210805

Synthesis and Thermoelectric Properties of Sn1−xGexTe by High Temperature and High Pressure

doi: 10.11858/gywlxb.20210805
  • Received Date: 30 May 2021
  • Rev Recd Date: 15 Jun 2021
  • In many thermoelectric materials, SnTe has the same crystal structure as PbTe, but does not contain heavy metal Pb, which has attracted extensive attention in recent years. At present, the thermoelectric properties of intrinsic SnTe are not particularly excellent. There are some disadvantages: a large number of intrinsic Sn vacancies lead to high carrier concentration, which worsens the electrical transport performance; the energy splitting between the light band and the heavy band in the valence band is large and the band gap is too narrow, which is not conducive to the Seebeck coefficient participating in the electrical transport through the heavy band; the lattice thermal conductivity is large. In this study, SnTe doped with Ge was prepared under high pressure and high temperature conditions. The results show that the band structure and the electrical transport properties of SnTe can be tuned effectively by Ge doping. At the same time, Ge doping can modulate the microstructure of the SnTe, which induced the formation of fine grains and second nanophases then reduced the thermal conductivity. The maximum figure-of-merit is 0.35 at 700 K for Ge0.2Sn0.8Te.

     

  • loading
  • [1]
    SNYDER G J, TOBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
    [2]
    HAN C, LI Z, LU G Q, et al. Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures [J]. Nano Energy, 2015, 15: 193–204. doi: 10.1016/j.nanoen.2015.04.024
    [3]
    ZHAO L D, ZHANG X, WU H J, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe [J]. Journal of the American Chemical Society, 2016, 138(7): 2366–2373. doi: 10.1021/jacs.5b13276
    [4]
    MASEK J, NUZHNYJ D N. Changes of electronic structure of SnTe due to high concentration of Sn vacancies [J]. Acta Physica Polonica, 1997, 92(5): 915–918. doi: 10.12693/APhysPolA.92.915
    [5]
    ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band [J]. Physical Chemistry Chemical Physics, 2014, 16(38): 20741–20748. doi: 10.1039/C4CP02091J
    [6]
    TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering [J]. Chemistry of Materials, 2015, 27(22): 7801–7811. doi: 10.1021/acs.chemmater.5b03708
    [7]
    LI W, WU Y, LIN S, et al. Advances in environment-friendly SnTe thermoelectrics [J]. ACS Energy Letters, 2017, 2(10): 2349–2355. doi: 10.1021/acsenergylett.7b00658
    [8]
    PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys & Compounds, 2012, 514: 40–44.
    [9]
    BANIK A, BISWAS K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization [J]. Journal of Solid State Chemistry, 2016, 242: 43–49. doi: 10.1016/j.jssc.2016.02.012
    [10]
    TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. [J]. Journal of the American Chemical Society, 2014, 136(19): 7006–7017. doi: 10.1021/ja500860m
    [11]
    TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg) [J]. Physical Chemistry Chemical Physics, 2016, 18(10): 7141–7147. doi: 10.1039/C5CP07620J
    [12]
    ORABI R A R A, HWANG J, LIN C C, et al. Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials [J]. Chemistry of Materials, 2017, 29(2): 612–620.
    [13]
    BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties [J]. Chemistry of Materials, 2015, 27(2): 581–587. doi: 10.1021/cm504112m
    [14]
    ZHAO L D, WU H J, HAO S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance [J]. Energy and Environmental Science, 2013, 6(11): 3346–3355. doi: 10.1039/c3ee42187b
    [15]
    KORRINGA J, GERRITSEN A N. The cooperative electron phenomenon in dilute alloys [J]. Physica, 1953, 19(1): 457–507. doi: 10.1016/S0031-8914(53)80053-4
    [16]
    KULBACHINSKII V, BRANDT N, CHEREMNYKH P, et al. Magnetoresistance and hall effect in Bi2Te3(Sn) in ultrahigh magnetic fields and under pressure [J]. Physica Status Solidi (B), 2010, 150(1): 237–243.
    [17]
    ZHANG Q, CAO F, LIU W S, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1- ySey [J]. Journal of the American Chemical Society, 2012, 134(24): 10031–10038. doi: 10.1021/ja301245b
    [18]
    ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe [J]. Proceedings of the National Academy of Sciences, 2013, 110(33): 13261–13266. doi: 10.1073/pnas.1305735110
    [19]
    WU H J, CHANG C, FENG D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe [J]. Energy & Environmental Science, 2015, 8(11): 3298–3312.
    [20]
    PEI Y Z, ZHENG L L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe [J]. Advanced Electronic Materials, 2016, 2(6): 1600019. doi: 10.1002/aelm.201600019
    [21]
    VINEIS C J, SHAKOURI A, MAJUMDAR A, et al. Nanostructured thermoelectrics: big efficiency gains from small features [J]. Advanced Materials, 2010, 22(36): 3970–3980. doi: 10.1002/adma.201000839
    [22]
    TAN G J, SHI F Y, HAO S Q, et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence [J]. Journal of the American Chemical Society, 2015, 137(15): 5100–5112. doi: 10.1021/jacs.5b00837
    [23]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [24]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868.
    [25]
    PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
    [26]
    TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe [J]. Journal of the American Chemical Society, 2015, 137(15): 11507–11516.
    [27]
    HE J, TAN X J, XU J T, et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method [J]. Journal of Materials Chemistry A, 2015, 3(39): 19974–19979. doi: 10.1039/C5TA05535K
    [28]
    FU T Z, XIN J Z, ZHU T J, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying [J]. Science Bulletin, 2019, 64(14): 1024–1030.
    [29]
    NSHIMYIMANA E, SU X L, XIE H Y, et al. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe [J]. Science Bulletin, 2018, 63(11): 717–725. doi: 10.1016/j.scib.2018.04.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(1197) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return