Citation: | DENG Hongshan, ZHANG Jianbo, WANG Dong, HU Qingyang, DING Yang. Ground State Study of Quantum Material GaTa4Se8[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011101. doi: 10.11858/gywlxb.20210797 |
[1] |
ABD-ELMEGUID M M, NI B, KHOMSKII D I, et al. Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure [J]. Physical Review Letters, 2004, 93(12): 126403. doi: 10.1103/PhysRevLett.93.126403
|
[2] |
POCHA R, JOHRENDT D, NI B F, et al. Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb4S8, GaNb4Se8, and GaTa4Se8 [J]. Journal of the American Chemical Society, 2005, 127(24): 8732–8740. doi: 10.1021/ja050243x
|
[3] |
VAJU C, CARIO L, CORRAZE B, et al. Electric-pulse-driven electronic phase separation, insulator-metal transition, and possible superconductivity in a Mott insulator [J]. Advanced Materials, 2008, 20(14): 2760–2765. doi: 10.1002/adma.200702967
|
[4] |
GUIOT V, JANOD E, CORRAZE B, et al. Control of the electronic properties and resistive switching in the new series of Mott insulators GaTa4Se8–yTey (0 ≤y≤ 6.5) [J]. Chemistry of Materials, 2011, 23(10): 2611–2618. doi: 10.1021/cm200266n
|
[5] |
CAMJAYI A, WEHT R, ROZENBERG M J. Localised wannier orbital basis for the Mott insulators GaV4S8 and GaTa4Se8 [J]. Europhysics Letters, 2012, 100(5): 57004. doi: 10.1209/0295-5075/100/57004
|
[6] |
GUIOT V, CARIO L, JANOD E, et al. Avalanche breakdown in GaTa4Se8-xTex narrow-gap Mott insulators [J]. Nature Communications, 2013, 4(1): 1722. doi: 10.1038/ncomms2735
|
[7] |
TA PHUOC V, VAJU C, CORRAZE B, et al. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition [J]. Physical Review Letters, 2013, 110(3): 037401. doi: 10.1103/PhysRevLett.110.037401
|
[8] |
DUBOST V, CREN T, VAJU C, et al. Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8 [J]. Nano Letters, 2013, 13(8): 3648–3653. doi: 10.1021/nl401510p
|
[9] |
CAMJAYI A, ACHA C, WEHT R, et al. First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8 [J]. Physical Review Letters, 2014, 113(8): 086404. doi: 10.1103/PhysRevLett.113.086404
|
[10] |
JEONG M Y, CHANG S H, KIM B H, et al. Direct experimental observation of the molecular Jeff = 3/2 ground state in the lacunar spinel GaTa4Se8 [J]. Nature Communications, 2017, 8(1): 782. doi: 10.1038/s41467-017-00841-9
|
[11] |
PARK M J, SIM G, JEONG M Y, et al. Pressure-induced topological superconductivity in the spin-orbit Mott insulator GaTa4Se8 [J]. NPJ Quantum Materials, 2020, 5(1): 41. doi: 10.1038/s41535-019-0206-8
|
[12] |
JEONG M Y, CHANG S H, LEE H J, et al. Jeff = 3/2 metallic phase and unconventional superconductivity in GaTa4Se8 [J]. Physical Review B, 2021, 103(8): L081112. doi: 10.1103/PhysRevB.103.L081112
|
[13] |
INOUE I H, ROZENBERG M J. Taming the Mott transition for a novel Mott transistor [J]. Advanced Functional Materials, 2008, 18(16): 2289–2292. doi: 10.1002/adfm.200800558
|
[14] |
CARIO L, VAJU C, CORRAZE B, et al. Electric-field-induced resistive switching in a family of Mott insulators: towards a new class of RRAM memories [J]. Advanced Materials, 2010, 22(45): 5193–5197. doi: 10.1002/adma.201002521
|
[15] |
STOLIAR P, CARIO L, JANOD E, et al. Universal electric-field-driven resistive transition in narrow-gap Mott insulators [J]. Advanced Materials, 2013, 25(23): 3222–3226. doi: 10.1002/adma.201301113
|
[16] |
DUBOST V, CREN T, VAJU C, et al. Electric-field-assisted nanostructuring of a Mott insulator [J]. Advanced Functional Materials, 2009, 19(17): 2800–2804. doi: 10.1002/adfm.200900208
|
[17] |
KIM H S, IM J, HAN M J, et al. Spin-orbital entangled molecular Jeff states in lacunar spinel compounds [J]. Nature Communications, 2014, 5(1): 3988. doi: 10.1038/ncomms4988
|
[18] |
GEIRHOS K, RESCHKE S, GHARA S, et al. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels [J]. Physica Status Solidi B, 2021: 2100260.
|
[19] |
POCHA R, JOHRENDT D, PÖTTGEN R. Electronic and structural instabilities in GaV4S8 and GaMo4S8 [J]. Chemistry of Materials, 2000, 12(10): 2882–2887. doi: 10.1021/cm001099b
|
[20] |
ZHANG S, ZHANG T T, DENG H S, et al. Crystal and electronic structure of GaTa4Se8 from first-principles calculations [J]. Physical Review B, 2020, 102(21): 214114. doi: 10.1103/PhysRevB.102.214114
|
[21] |
CHEN X J. Exploring high-temperature superconductivity in hard matter close to structural instability [J]. Matter and Radiation at Extremes, 2020, 5(6): 068102. doi: 10.1063/5.0033143
|
[22] |
SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[23] |
CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4∶1 methanol-ethanol mixture and silicone oil under high pressure [J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893
|
[24] |
PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
|
[25] |
ALTOMARE A, CORRIERO N, CUOCCI C, et al. EXPO software for solving crystal structures by powder diffraction data: methods and application [J]. Crystal Research and Technology, 2015, 50(910): 737–742. doi: 10.1002/crat.201500024
|
[26] |
DENG H S, ZHANG J B, JEONG M Y, et al. Metallization of quantum material GaTa4Se8 at high pressure [J]. Journal of Physical Chemistry Letters, 2021, 12(23): 5601–5607. doi: 10.1021/acs.jpclett.1c01069
|
[27] |
JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65
|
[28] |
HLINKA J, BORODAVKA F, RAFALOVSKYI I, et al. Lattice modes and the Jahn-Teller ferroelectric transition of GaV4S8 [J]. Physcal Review B, 2016, 94(6): 060104. doi: 10.1103/PhysRevB.94.060104
|
[29] |
IMADA M, FUJIMORI A, TOKURA Y. Metal-insulator transitions [J]. Reviews of Modern Physics, 1998, 70(4): 1039–1263. doi: 10.1103/RevModPhys.70.1039
|
[30] |
WEBER W H, MERLIN R. Raman scattering in materials science [M]. Berlin: Springer Science and Business Media, 2013.
|
[1] | SU Yongchao, NING Jianguo, XU Xiangzhao. Optimization Model and Visualization Simulation of Projectile Penetration into Concrete[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 025103. doi: 10.11858/gywlxb.20240811 |
[2] | JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606 |
[3] | REN Huilan, DU Yining, SONG Shuizhou. Deformation and Failure of Concrete Splitting Based on DIC Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044104. doi: 10.11858/gywlxb.20220509 |
[4] | ZHANG Jiandong, WU Haijun, LI Wei, LI Jinzhu, PI Aiguo. Experiment and Numerical Simulation on Oblique Penetrating Concrete Targets by a Special-Shaped Projectile with Ribbed Head[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065103. doi: 10.11858/gywlxb.20210723 |
[5] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[6] | CHEN Qidong, WANG Lixiao, LIU Xin, SHEN Yichen. Damage of 3D Random Aggregate Concrete under Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034203. doi: 10.11858/gywlxb.20190855 |
[7] | QIANG Hongfu, SUN Xinya, WANG Guang, CHEN Fuzhen. Numerical Simulation of Penetration in Concrete Sheet Based on SPH Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634 |
[8] | ZHAO Fuqi, XU Peibao, WEN Heming. Influence of Specimen Size in SHPB Tests on Concrete[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532 |
[9] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[10] | LIU Hai-Feng, WU Ping. Dynamic Mechanical Behavior of Concrete with Different Sizes of Interface Transition Zone[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006 |
[11] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[12] | WANG Gang, XU Xiang-Zhao, ZHENG Kai. Experimental Investigation on the Concrete Damage Behaviorunder the Shaped-Charge Loading[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 277-285. doi: 10.11858/gywlxb.2016.04.003 |
[13] | LIU Hai-Feng, HAN Li. Numerical Simulation of Dynamic Mechanical Behavior of Concrete with Two-dimensional Random Distribution of Coarse Aggregate[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003 |
[14] | LI Zhi-Wu, XU Jin-Yu, DAI Shuang-Tian, BAI Er-Lei, GAO Zhi-Gang. Experimental Study on Concrete Exposed to High Temperature under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 417-422. doi: 10.11858/gywlxb.2013.03.016 |
[15] | ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen. The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15-22 . doi: 10.11858/gywlxb.2011.01.003 |
[16] | LIAN Bing, JIANG Jian-Wei, MEN Jian-Bing, WANG Shu-You. Simulation Analysis on Law of Penetration of Long-Rod Projectiles with High Speed into Concrete[J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 377-382 . doi: 10.11858/gywlxb.2010.05.010 |
[17] | ZHONG Wei-Zhou, SONG Shun-Cheng, ZHANG Fang-Ju, ZHANG Qing-Ping, HUANG Xi-Cheng, LI Si-Zhong, LU Yong-Gang. Research on Behavior of Composite Material Projectile Penetrate Concrete Target[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 75-80 . doi: 10.11858/gywlxb.2009.01.013 |
[18] | TIAN Zhan-Dong, LI Shou-Cang, DUAN Zhuo-Ping, ZHANG Zhen-Yu. Numerical Simulation of the Trace of Projectiles Penetrating Concrete[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 354-358 . doi: 10.11858/gywlxb.2007.04.004 |
[19] | WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen. Building of a Constitutive Model for Concrete under Dynamic Impact[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 337-344 . doi: 10.11858/gywlxb.2006.04.001 |
[20] | WANG Ke-Hui, CHU Zhe, ZHOU Gang, WANG Jin-Hai, ZHU Yu-Rong, MIN Tao, HAN Juan-Ni. Numerical Simulation and Experimental Study of Penetrator with Composite Structure Impacting Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 93-96 . doi: 10.11858/gywlxb.2005.01.016 |