Citation: | DENG Hongshan, ZHANG Jianbo, WANG Dong, HU Qingyang, DING Yang. Ground State Study of Quantum Material GaTa4Se8[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011101. doi: 10.11858/gywlxb.20210797 |
[1] |
ABD-ELMEGUID M M, NI B, KHOMSKII D I, et al. Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure [J]. Physical Review Letters, 2004, 93(12): 126403. doi: 10.1103/PhysRevLett.93.126403
|
[2] |
POCHA R, JOHRENDT D, NI B F, et al. Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb4S8, GaNb4Se8, and GaTa4Se8 [J]. Journal of the American Chemical Society, 2005, 127(24): 8732–8740. doi: 10.1021/ja050243x
|
[3] |
VAJU C, CARIO L, CORRAZE B, et al. Electric-pulse-driven electronic phase separation, insulator-metal transition, and possible superconductivity in a Mott insulator [J]. Advanced Materials, 2008, 20(14): 2760–2765. doi: 10.1002/adma.200702967
|
[4] |
GUIOT V, JANOD E, CORRAZE B, et al. Control of the electronic properties and resistive switching in the new series of Mott insulators GaTa4Se8–yTey (0 ≤y≤ 6.5) [J]. Chemistry of Materials, 2011, 23(10): 2611–2618. doi: 10.1021/cm200266n
|
[5] |
CAMJAYI A, WEHT R, ROZENBERG M J. Localised wannier orbital basis for the Mott insulators GaV4S8 and GaTa4Se8 [J]. Europhysics Letters, 2012, 100(5): 57004. doi: 10.1209/0295-5075/100/57004
|
[6] |
GUIOT V, CARIO L, JANOD E, et al. Avalanche breakdown in GaTa4Se8-xTex narrow-gap Mott insulators [J]. Nature Communications, 2013, 4(1): 1722. doi: 10.1038/ncomms2735
|
[7] |
TA PHUOC V, VAJU C, CORRAZE B, et al. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition [J]. Physical Review Letters, 2013, 110(3): 037401. doi: 10.1103/PhysRevLett.110.037401
|
[8] |
DUBOST V, CREN T, VAJU C, et al. Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8 [J]. Nano Letters, 2013, 13(8): 3648–3653. doi: 10.1021/nl401510p
|
[9] |
CAMJAYI A, ACHA C, WEHT R, et al. First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8 [J]. Physical Review Letters, 2014, 113(8): 086404. doi: 10.1103/PhysRevLett.113.086404
|
[10] |
JEONG M Y, CHANG S H, KIM B H, et al. Direct experimental observation of the molecular Jeff = 3/2 ground state in the lacunar spinel GaTa4Se8 [J]. Nature Communications, 2017, 8(1): 782. doi: 10.1038/s41467-017-00841-9
|
[11] |
PARK M J, SIM G, JEONG M Y, et al. Pressure-induced topological superconductivity in the spin-orbit Mott insulator GaTa4Se8 [J]. NPJ Quantum Materials, 2020, 5(1): 41. doi: 10.1038/s41535-019-0206-8
|
[12] |
JEONG M Y, CHANG S H, LEE H J, et al. Jeff = 3/2 metallic phase and unconventional superconductivity in GaTa4Se8 [J]. Physical Review B, 2021, 103(8): L081112. doi: 10.1103/PhysRevB.103.L081112
|
[13] |
INOUE I H, ROZENBERG M J. Taming the Mott transition for a novel Mott transistor [J]. Advanced Functional Materials, 2008, 18(16): 2289–2292. doi: 10.1002/adfm.200800558
|
[14] |
CARIO L, VAJU C, CORRAZE B, et al. Electric-field-induced resistive switching in a family of Mott insulators: towards a new class of RRAM memories [J]. Advanced Materials, 2010, 22(45): 5193–5197. doi: 10.1002/adma.201002521
|
[15] |
STOLIAR P, CARIO L, JANOD E, et al. Universal electric-field-driven resistive transition in narrow-gap Mott insulators [J]. Advanced Materials, 2013, 25(23): 3222–3226. doi: 10.1002/adma.201301113
|
[16] |
DUBOST V, CREN T, VAJU C, et al. Electric-field-assisted nanostructuring of a Mott insulator [J]. Advanced Functional Materials, 2009, 19(17): 2800–2804. doi: 10.1002/adfm.200900208
|
[17] |
KIM H S, IM J, HAN M J, et al. Spin-orbital entangled molecular Jeff states in lacunar spinel compounds [J]. Nature Communications, 2014, 5(1): 3988. doi: 10.1038/ncomms4988
|
[18] |
GEIRHOS K, RESCHKE S, GHARA S, et al. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels [J]. Physica Status Solidi B, 2021: 2100260.
|
[19] |
POCHA R, JOHRENDT D, PÖTTGEN R. Electronic and structural instabilities in GaV4S8 and GaMo4S8 [J]. Chemistry of Materials, 2000, 12(10): 2882–2887. doi: 10.1021/cm001099b
|
[20] |
ZHANG S, ZHANG T T, DENG H S, et al. Crystal and electronic structure of GaTa4Se8 from first-principles calculations [J]. Physical Review B, 2020, 102(21): 214114. doi: 10.1103/PhysRevB.102.214114
|
[21] |
CHEN X J. Exploring high-temperature superconductivity in hard matter close to structural instability [J]. Matter and Radiation at Extremes, 2020, 5(6): 068102. doi: 10.1063/5.0033143
|
[22] |
SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[23] |
CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4∶1 methanol-ethanol mixture and silicone oil under high pressure [J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893
|
[24] |
PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
|
[25] |
ALTOMARE A, CORRIERO N, CUOCCI C, et al. EXPO software for solving crystal structures by powder diffraction data: methods and application [J]. Crystal Research and Technology, 2015, 50(910): 737–742. doi: 10.1002/crat.201500024
|
[26] |
DENG H S, ZHANG J B, JEONG M Y, et al. Metallization of quantum material GaTa4Se8 at high pressure [J]. Journal of Physical Chemistry Letters, 2021, 12(23): 5601–5607. doi: 10.1021/acs.jpclett.1c01069
|
[27] |
JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65
|
[28] |
HLINKA J, BORODAVKA F, RAFALOVSKYI I, et al. Lattice modes and the Jahn-Teller ferroelectric transition of GaV4S8 [J]. Physcal Review B, 2016, 94(6): 060104. doi: 10.1103/PhysRevB.94.060104
|
[29] |
IMADA M, FUJIMORI A, TOKURA Y. Metal-insulator transitions [J]. Reviews of Modern Physics, 1998, 70(4): 1039–1263. doi: 10.1103/RevModPhys.70.1039
|
[30] |
WEBER W H, MERLIN R. Raman scattering in materials science [M]. Berlin: Springer Science and Business Media, 2013.
|
[1] | LONG Haidong, CHEN Jie, XIAO Xiong, PENG Fang. High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790 |
[2] | ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1− |
[3] | HAN Pengju, HU Meihua, BI Ning, WANG Yueyue, ZHOU Xubiao, LI Shangsheng. Enhanced Thermoelectric Performance of P-Doped Silicon-Germanium Alloys Synthesized by High-Pressure Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 061101. doi: 10.11858/gywlxb.20220601 |
[4] | HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514 |
[5] | LI Hong-Tao, ZHANG Ji-Dong, XU Ling-Yun, ZHU Zhi-Xiu, ZHI Hui-Bo, WANG Biao, FAN Hao-Tian, SU Tai-Chao. Thermoelectric Properties of P-Type PbTe Prepared by High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 448-452. doi: 10.11858/gywlxb.2016.06.002 |
[6] | SU Tai-Chao, XU An-Tao, LI Hong-Tao, LI Shang-Sheng, FAN Hao-Tian, MA Hong-An, JIA Xiao-Peng. Electrical Transport Properties of PbSe Prepared by High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 495-499. doi: 10.11858/gywlxb.2013.04.004 |
[7] | ZHANG Wen-Kai, PENG Fang, GUO Zhen-Tang, GUAN Jun-Wei, LI Rong-Qi. Research on Thermal Conductivity of Diamond with Cr, Ti Coating/Copper Composite Materials by Sintering under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 306-312. doi: 10.11858/gywlxb.2012.03.010 |
[8] | LU Feng-Guo, QIU Li-Xia, DING Zhan-Hui, GUO Xing-Yuan, Lü Yang, ZHAO Xu-Dong, LIU Xiao-Yang. High-Pressure Synthesis and Properties Characterization of ZrN-ZrB2 Nanocomposites[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 104-110 . doi: 10.11858/gywlxb.2011.02.002 |
[9] | SU Tai-Chao, ZHANG Shu-Guang, LI Xiao-Lei, MA Hong-An, LI Shang-Sheng, JIA Xiao-Peng, . Thermoelectric Properties of AgSbTe2-Sb2Te3 Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 317-320 . doi: 10.11858/gywlxb.2011.04.005 |
[10] | SU Tai-Chao, ZHU Hong-Yu, LI Hong-Tao, LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, JIA Xiao-Peng. Electrical Properties of Thermoelectric Material of PbTe1-xSex Prepared by High Pressure Synthesis[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 247-250 . doi: 10.11858/gywlxb.2011.03.009 |
[11] | DONG Nan, JIA Xiao-Peng, SU Tai-Chao, JIANG Yi-Ping, GUO Jian-Gang, DENG Le, MA Hong-An. Synthesis and Electric Transport Properties of Na-Filled CoSb3 at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 42-45 . doi: 10.11858/gywlxb.2009.01.007 |
[12] | CHEN Zhi, DU Jian-Guo, ZHOU Wen-Ge, LIU Yong-Gang, LI Ying. Wave Velocity and Attenuation Characteristics of Gabbro at 100~300 ℃ and 0.5~4.0 GPa[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 338-344 . doi: 10.11858/gywlxb.2009.05.004 |
[13] | JIANG Yi-Ping, JIA Xiao-Peng, MA Hong-An, SU Tai-Chao, DONG Nan, DENG Le. High Pressure Synthesis and Electric Transport Properties of La Filled CoSb3 Skutterudite Thermoelectric Materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 87-90 . doi: 10.11858/gywlxb.2009.02.002 |
[14] | SU Tai-Chao, ZHU Pin-Wen, MA Hong-An, REN Guo-Zhong, GUO Jian-Gang, IMAI Yoshio, JIA Xiao-Peng. Thermoelectric Properties of N-PbTe Doped with Sb2Te3 Prepared by High-Pressure and High-Temperature[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 55-58 . doi: 10.11858/gywlxb.2007.01.009 |
[15] | XIE Hong-Sen, XU Ji-An, ZHOU Wen-Ge. A New Material for High-Pressure Anvil: Moissanite Gemstone[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 1-3 . doi: 10.11858/gywlxb.2004.01.001 |
[16] | ZHU Pin-Wen, JIA Xiao-Peng, CHEN Hai-Yong, CHEN Li-Xue, LI Dong-Mei, GUO Wei-Li, MA Hong-An, REN Guo-Zhong, ZOU Guang-Tian. PbTe Syntheses by High-Pressure and High-Temperature Approach[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 183-187 . doi: 10.11858/gywlxb.2002.03.004 |
[17] | MA Xian-Feng, YAN Xue-Wei. The Crystallization of BN and the Synthesis of cBN at High Pressure and Temperature[J]. Chinese Journal of High Pressure Physics, 1996, 10(2): 97-101 . doi: 10.11858/gywlxb.1996.02.003 |
[18] | ZHAO Xu-Dong, LIN Feng, LIU Xiao-Yang, HOU Wei-Min, LIU Wei-Na, SU Wen-Hui. Synthesis of Boron-Rich Boride NdB6 under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 170-175 . doi: 10.11858/gywlxb.1996.03.002 |
[19] | LIU Hong-Jian, LIU Wei-Na, GUAN Zhong-Su, SUN Shu-Lan, SU Wen-Hui. Crystallization Process of Amorphous SrB4O7:Eu2+ under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 1994, 8(3): 161-165 . doi: 10.11858/gywlxb.1994.03.001 |
[20] | XU Ying-Fan, HUANG Xin-Ming, CHEN Hong, WANG Wen-Kui. Crystallization of Pd40Ni40P20 Bulk Metallic Glass under High Pressure[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 13-19 . doi: 10.11858/gywlxb.1991.01.003 |