Citation: | DENG Hongshan, ZHANG Jianbo, WANG Dong, HU Qingyang, DING Yang. Ground State Study of Quantum Material GaTa4Se8[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011101. doi: 10.11858/gywlxb.20210797 |
[1] |
ABD-ELMEGUID M M, NI B, KHOMSKII D I, et al. Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure [J]. Physical Review Letters, 2004, 93(12): 126403. doi: 10.1103/PhysRevLett.93.126403
|
[2] |
POCHA R, JOHRENDT D, NI B F, et al. Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb4S8, GaNb4Se8, and GaTa4Se8 [J]. Journal of the American Chemical Society, 2005, 127(24): 8732–8740. doi: 10.1021/ja050243x
|
[3] |
VAJU C, CARIO L, CORRAZE B, et al. Electric-pulse-driven electronic phase separation, insulator-metal transition, and possible superconductivity in a Mott insulator [J]. Advanced Materials, 2008, 20(14): 2760–2765. doi: 10.1002/adma.200702967
|
[4] |
GUIOT V, JANOD E, CORRAZE B, et al. Control of the electronic properties and resistive switching in the new series of Mott insulators GaTa4Se8–yTey (0 ≤y≤ 6.5) [J]. Chemistry of Materials, 2011, 23(10): 2611–2618. doi: 10.1021/cm200266n
|
[5] |
CAMJAYI A, WEHT R, ROZENBERG M J. Localised wannier orbital basis for the Mott insulators GaV4S8 and GaTa4Se8 [J]. Europhysics Letters, 2012, 100(5): 57004. doi: 10.1209/0295-5075/100/57004
|
[6] |
GUIOT V, CARIO L, JANOD E, et al. Avalanche breakdown in GaTa4Se8-xTex narrow-gap Mott insulators [J]. Nature Communications, 2013, 4(1): 1722. doi: 10.1038/ncomms2735
|
[7] |
TA PHUOC V, VAJU C, CORRAZE B, et al. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition [J]. Physical Review Letters, 2013, 110(3): 037401. doi: 10.1103/PhysRevLett.110.037401
|
[8] |
DUBOST V, CREN T, VAJU C, et al. Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8 [J]. Nano Letters, 2013, 13(8): 3648–3653. doi: 10.1021/nl401510p
|
[9] |
CAMJAYI A, ACHA C, WEHT R, et al. First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8 [J]. Physical Review Letters, 2014, 113(8): 086404. doi: 10.1103/PhysRevLett.113.086404
|
[10] |
JEONG M Y, CHANG S H, KIM B H, et al. Direct experimental observation of the molecular Jeff = 3/2 ground state in the lacunar spinel GaTa4Se8 [J]. Nature Communications, 2017, 8(1): 782. doi: 10.1038/s41467-017-00841-9
|
[11] |
PARK M J, SIM G, JEONG M Y, et al. Pressure-induced topological superconductivity in the spin-orbit Mott insulator GaTa4Se8 [J]. NPJ Quantum Materials, 2020, 5(1): 41. doi: 10.1038/s41535-019-0206-8
|
[12] |
JEONG M Y, CHANG S H, LEE H J, et al. Jeff = 3/2 metallic phase and unconventional superconductivity in GaTa4Se8 [J]. Physical Review B, 2021, 103(8): L081112. doi: 10.1103/PhysRevB.103.L081112
|
[13] |
INOUE I H, ROZENBERG M J. Taming the Mott transition for a novel Mott transistor [J]. Advanced Functional Materials, 2008, 18(16): 2289–2292. doi: 10.1002/adfm.200800558
|
[14] |
CARIO L, VAJU C, CORRAZE B, et al. Electric-field-induced resistive switching in a family of Mott insulators: towards a new class of RRAM memories [J]. Advanced Materials, 2010, 22(45): 5193–5197. doi: 10.1002/adma.201002521
|
[15] |
STOLIAR P, CARIO L, JANOD E, et al. Universal electric-field-driven resistive transition in narrow-gap Mott insulators [J]. Advanced Materials, 2013, 25(23): 3222–3226. doi: 10.1002/adma.201301113
|
[16] |
DUBOST V, CREN T, VAJU C, et al. Electric-field-assisted nanostructuring of a Mott insulator [J]. Advanced Functional Materials, 2009, 19(17): 2800–2804. doi: 10.1002/adfm.200900208
|
[17] |
KIM H S, IM J, HAN M J, et al. Spin-orbital entangled molecular Jeff states in lacunar spinel compounds [J]. Nature Communications, 2014, 5(1): 3988. doi: 10.1038/ncomms4988
|
[18] |
GEIRHOS K, RESCHKE S, GHARA S, et al. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels [J]. Physica Status Solidi B, 2021: 2100260.
|
[19] |
POCHA R, JOHRENDT D, PÖTTGEN R. Electronic and structural instabilities in GaV4S8 and GaMo4S8 [J]. Chemistry of Materials, 2000, 12(10): 2882–2887. doi: 10.1021/cm001099b
|
[20] |
ZHANG S, ZHANG T T, DENG H S, et al. Crystal and electronic structure of GaTa4Se8 from first-principles calculations [J]. Physical Review B, 2020, 102(21): 214114. doi: 10.1103/PhysRevB.102.214114
|
[21] |
CHEN X J. Exploring high-temperature superconductivity in hard matter close to structural instability [J]. Matter and Radiation at Extremes, 2020, 5(6): 068102. doi: 10.1063/5.0033143
|
[22] |
SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
|
[23] |
CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4∶1 methanol-ethanol mixture and silicone oil under high pressure [J]. Matter and Radiation at Extremes, 2021, 6(3): 038402. doi: 10.1063/5.0044893
|
[24] |
PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
|
[25] |
ALTOMARE A, CORRIERO N, CUOCCI C, et al. EXPO software for solving crystal structures by powder diffraction data: methods and application [J]. Crystal Research and Technology, 2015, 50(910): 737–742. doi: 10.1002/crat.201500024
|
[26] |
DENG H S, ZHANG J B, JEONG M Y, et al. Metallization of quantum material GaTa4Se8 at high pressure [J]. Journal of Physical Chemistry Letters, 2021, 12(23): 5601–5607. doi: 10.1021/acs.jpclett.1c01069
|
[27] |
JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations [J]. Reviews of Modern Physics, 1983, 55(1): 65–108. doi: 10.1103/RevModPhys.55.65
|
[28] |
HLINKA J, BORODAVKA F, RAFALOVSKYI I, et al. Lattice modes and the Jahn-Teller ferroelectric transition of GaV4S8 [J]. Physcal Review B, 2016, 94(6): 060104. doi: 10.1103/PhysRevB.94.060104
|
[29] |
IMADA M, FUJIMORI A, TOKURA Y. Metal-insulator transitions [J]. Reviews of Modern Physics, 1998, 70(4): 1039–1263. doi: 10.1103/RevModPhys.70.1039
|
[30] |
WEBER W H, MERLIN R. Raman scattering in materials science [M]. Berlin: Springer Science and Business Media, 2013.
|