Citation: | LIU Chao, YING Pan. Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792 |
[1] |
XU B, TIAN Y J. Superhard materials: recent research progress and prospects [J]. Science China Materials, 2015, 58(2): 132–142. doi: 10.1007/s40843-015-0026-5
|
[2] |
刘银娟, 贺端威, 王培, 等. 复合超硬材料的高压合成与研究 [J]. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
LIU Y J, HE D W, WANG P, et al. Syntheses and studies of superhard composites under high pressure [J]. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
|
[3] |
KIDALOV S V, SHAKHOV F M, DAVIDENKO V M, et al. Synthesis and properties of superhard crystalline materials in boron-carbon-nitrogen system [J]. Technical Physics Letters, 2011, 37(3): 247–249. doi: 10.1134/S1063785011030266
|
[4] |
SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5 [J]. Physical Review Letters, 2009, 102(1): 015506. doi: 10.1103/PhysRevLett.102.015506
|
[5] |
ZININ P V, MING L C, ISHII H A, et al. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase [J]. Journal of Applied Physics, 2012, 111(11): 114905. doi: 10.1063/1.4723275
|
[6] |
KOBAYASHI M, HIGASHI I, BRODHAG C, et al. Structure of B6O boron-suboxide by Rietveld refinement [J]. Journal of Materials Science, 1993, 28(8): 2129–2134. doi: 10.1007/BF00367573
|
[7] |
ENDO T, SATO T, SHIMADA M. High-pressure synthesis of B2O with diamond-like structure [J]. Journal of Materials Science Letters, 1987, 6(6): 683–685. doi: 10.1007/BF01770925
|
[8] |
ZHAO Y, HE D W, DAEMEN L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks [J]. Journal of Materials Research, 2002, 17(12): 3139–3145. doi: 10.1557/JMR.2002.0454
|
[9] |
SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al. Synthesis of superhard cubic BC2N [J]. Applied Physics Letters, 2001, 78(10): 1385–1387. doi: 10.1063/1.1337623
|
[10] |
KNITTLE E, KANER R B, JEANLOZ R, et al. High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions [J]. Physical Review B, 1995, 51(18): 12149–12156. doi: 10.1103/PhysRevB.51.12149
|
[11] |
LIU L Y, HU M, ZHAO Z S, et al. Superhard conductive orthorhombic carbon polymorphs [J]. Carbon, 2020, 158: 546–552. doi: 10.1016/j.carbon.2019.11.024
|
[12] |
李子鹤, 刘超, 马梦东, 等. 新型超硬C5N晶体结构及性能的第一性原理研究 [J]. 高压物理学报, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606
LI Z H, LIU C, MA M D, et al. Structure and properties of novel superhard C5N: a first-principles study [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606
|
[13] |
LUO X G, GUO X J, XU B, et al. Body-centered superhard BC2N phases from first principles [J]. Physical Review B, 2007, 76(9): 094103. doi: 10.1103/PhysRevB.76.094103
|
[14] |
LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989, 245(4920): 841–842. doi: 10.1126/science.245.4920.841
|
[15] |
GARVIE L A J, HUBERT H, PETUSKEY W T, et al. High-pressure, high-temperature syntheses in the B-C-N-O system [J]. Journal of Solid State Chemistry, 1997, 133(2): 365–371. doi: 10.1006/jssc.1997.7583
|
[16] |
BOLOTINA N B, DYUZHEVA T I, BENDELIANI N A. Atomic structure of boron suboxycarbide B(C,O)0.155 [J]. Crystallography Reports, 2001, 46(5): 734–740. doi: 10.1134/1.1405858
|
[17] |
LI Y W, LI Q, MA Y M. B2CO: a potential superhard material in the B-C-O system [J]. EPL (Europhysics Letters), 2011, 95(6): 66006. doi: 10.1209/0295-5075/95/66006
|
[18] |
ZHANG M G, YAN H Y, ZHENG B B, et al. Influences of carbon concentration on crystal structures and ideal strengths of B2CxO compounds in the B-C-O system [J]. Scientific Reports, 2015, 5: 15481. doi: 10.1038/srep15481
|
[19] |
LIU C, ZHAO Z S, LUO K, et al. Superhard orthorhombic phase of B2CO compound [J]. Diamond and Related Materials, 2017, 73: 87–92. doi: 10.1016/j.diamond.2016.07.010
|
[20] |
QIAO L P, JIN Z, YAN G Y, et al. Density-functional-studying of oP8-, tI16-, and tP4-B2CO physical properties under pressure [J]. Journal of Solid State Chemistry, 2019, 270: 642–650. doi: 10.1016/j.jssc.2018.12.012
|
[21] |
LIU C, CHEN M W, HE J L, et al. Superhard B2CO phases derived from carbon allotropes [J]. RSC Advances, 2017, 7(82): 52192–52199. doi: 10.1039/c7ra09277f
|
[22] |
YAN H Y, ZHANG M G, WEI Q, et al. A new orthorhombic ground-state phase and mechanical strengths of ternary B2CO compound [J]. Chemical Physics Letters, 2018, 701: 86–92. doi: 10.1016/j.cplett.2018.04.041
|
[23] |
CHEN M W, LIU C, LIU M L, et al. Exploring the electronic, mechanical, and anisotropy properties of novel tetragonal B2CO phase [J]. Journal of Materials Research, 2019, 34(21): 3617–3626. doi: 10.1557/jmr.2019.271
|
[24] |
WANG S N, OGANOV A R, QIAN G R, et al. Novel superhard B-C-O phases predicted from first principles [J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1859–1863. doi: 10.1039/c5cp05367f
|
[25] |
NURUZZAMAN M, ALAM M A, SHAH M A H, et al. Investigation of thermodynamic stability, mechanical and electronic properties of superhard tetragonal B4CO4 compound: ab initio calculations [J]. Computational Condensed Matter, 2017, 12: 1–8. doi: 10.1016/j.cocom.2017.05.005
|
[26] |
ZHENG B B, ZHANG M G, WANG C J. Exploring the mechanical anisotropy and ideal strengths of tetragonal B4CO4 [J]. Materials, 2017, 10(2): 128. doi: 10.3390/ma10020128
|
[27] |
QIAO L P, JIN Z. Two B-C-O compounds: structural, mechanical anisotropy and electronic properties under pressure [J]. Materials, 2017, 10(12): 1413. doi: 10.3390/ma10121413
|
[28] |
LIU C, CHEN M W, YANG Y, et al. Theoretical exploring the mechanical and electrical properties of tI12-B6C4O2 [J]. Computational Materials Science, 2018, 150: 259–264. doi: 10.1016/j.commatsci.2018.04.020
|
[29] |
刘超, 陈明伟, 梁彤祥. B-C-O化合物硬质结构的理论设计与性质研究[M]. 北京: 冶金工业出版社, 2020.
|
[30] |
WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
|
[31] |
WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
|
[32] |
WANG H, WANG Y C, LV J, et al. CALYPSO structure prediction method and its wide application [J]. Computational Materials Science, 2016, 112: 406–415. doi: 10.1016/j.commatsci.2015.09.037
|
[33] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567–570. doi: 10.1524/zkri.220.5.567.65075
|
[34] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|
[35] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
|
[36] |
PARLINSKI K, LI Z Q, KAWAZOE Y. First-principles determination of the soft mode in cubic ZrO2 [J]. Physical Review Letters, 1997, 78(21): 4063–4066. doi: 10.1103/PhysRevLett.78.4063
|
[37] |
MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
|
[38] |
BROQVIST P, ALKAUSKAS A, PASQUARELLO A. Defect levels of dangling bonds in silicon and germanium through hybrid functionals [J]. Physical Review B, 2008, 78(7): 075203. doi: 10.1103/PhysRevB.78.075203
|
[39] |
KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. Journal of Chemical Physics, 2006, 125(22): 224106. doi: 10.1063/1.2404663
|
[40] |
刘超. AlX化合物结构与性质的第一性原理研究[M]. 北京: 冶金工业出版社, 2020.
|
[41] |
DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
|
[42] |
MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
|
[43] |
WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 054115. doi: 10.1103/PhysRevB.76.054115
|
[44] |
TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021
|
[1] | HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654 |
[2] | LIU Pengfei, GUO Jiaqi, FAN Junqi, MA Zhaowei. Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608 |
[3] | LI Zuo, ZHANG Fengling, LIAO Dalin. Elastic Properties of HBT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 041301. doi: 10.11858/gywlxb.20190823 |
[4] | WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802 |
[5] | LI Xiaoyang, LU Yang, YAN Hao. Electrical Transport Properties of Hexagonal TaSi2 Crystals Based on Structural Stability under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021102. doi: 10.11858/gywlxb.20170571 |
[6] | CHANG Shaomei. Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640 |
[7] | HU Yong-Jin, HE Kai-Hua. Electronic Structure and Photoelectric Properties ofZnTe under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 641-647. doi: 10.11858/gywlxb.2014.06.001 |
[8] | REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005 |
[9] | HAO Ai-Min, ZHOU Tie-Jun, ZHU Yan, LIU Xin. First-Principles Investigations on Structure Transformation, Elastic and Thermodynamic Properties of TiN under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 395-401. doi: 10.11858/gywlxb.2012.04.006 |
[10] | ZHANG Dong-Mei, XIAO Hong-Yu, ZHANG Yong-Sheng, HAN Yong-Hao, GAO Chun-Xiao. Electrical Property of Fe3O4/-CD under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 661-664. doi: 10.11858/gywlxb.2012.06.010 |
[11] | HE Chun-Yuan, GAO Chun-Xiao, LI Ming, HAO Ai-Min, HUANG Xiao-Wei, YU Cui-Ling, ZHANG Dong-Mei, WANG Yue, ZOU Guang-Tian. Electrical Property and Phase Transition of CdSe under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 39-42 . doi: 10.11858/gywlxb.2008.01.009 |
[12] | LI Jin-Lai, WU Zhen-Yu, BAO Zhong-Xing, ZOU Bing-Suo, FENG Ya-Qing. Electric Properties of ZnO Nanowires under High Pressure[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 220-224 . doi: 10.11858/gywlxb.2007.02.018 |
[13] | QIAO Er-Wei, ZHENG Hai-Fei. Stability of n-Pentane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 371-376 . doi: 10.11858/gywlxb.2005.04.016 |
[14] | WU Zhen-Yu, CAO Li, BAO Zhong-Xing, LIU Cui-Xia, LI Qian-Shu, ZOU Bing-Suo. The Properties and Structural Investigation of ZnO Nanocrystals under Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 45-49 . doi: 10.11858/gywlxb.2003.01.007 |
[15] | ZHANG Gong-Mu, BAO Zhong-Xing, LI Feng-Ying, LIU Cui-Xia, YU Ri-Cheng, Lü Tian-Quan, JIN Chang-Qing. Equation of State and Electric Properties of BaCuO2.5 under High Pressures[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 150-152 . doi: 10.11858/gywlxb.2003.02.013 |
[16] | ZHAO Xu, YU Ri-Cheng, LI Feng-Ying, LIU Zhen-Xing, BAO Zhong-Xing, TANG Gui-De, LIU Jing, JIN Chang-Qing. Electrical Properties and Structural Stability of Sr2FeMoxNb1-xO6 (x=0, 0.3) under High Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 301-304 . doi: 10.11858/gywlxb.2003.04.010 |
[17] | BAO Zhong-Xing, XU Li-Wen, CHE Guang-Can, LIU Cui-Xia, CHEN Hong, WU Fei, ZHAO Zhong-Xian. Phase Transitions and Electronic Properties of La1.65Sr0.35CaCu2O4+Cly under High Pressure[J]. Chinese Journal of High Pressure Physics, 1999, 13(1): 30-33 . doi: 10.11858/gywlxb.1999.01.005 |
[18] | BAO Zhong-Xing, CHENG Kai-Jia, ZHAO Chang-Sen, CHENG Shu-Yu, LIU Cui-Xia, CAI Zong-Yi, LI Yan. Equation of State, Electrical Properties and Phase Transition in CuO at High Pressure[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 254-257 . doi: 10.11858/gywlxb.1998.04.003 |
[19] | BAO Zhong-Xing, LIU Cui-Xia, HUANG Chao-En, LIU You-Chen, CHEN Hong, WU Fei. Electrical Properties and Phase Transitions in -BaB2O4 at High Pressure[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 46-49 . doi: 10.11858/gywlxb.1997.01.008 |
[20] | ZHAO Ting-He, YAN Xue-Wei, CUI Shuo-Jing, CHEN Jiu-Hua, LIU Li-Jun, NIU Wei, ZHAO Wei. Synthesis of Jadeite Jewel and Its Thermal Behavior and Stability[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 291-296 . doi: 10.11858/gywlxb.1992.04.008 |