
Citation: | WAN Xi, YAO Songlin, PEI Xiaoyang. Phase Field Modeling of the Evolution of Helium Bubbles in Shock Loaded Aluminum[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014203. doi: 10.11858/gywlxb.20210791 |
磁驱动固体套筒内爆是指电流通过金属套筒表面时,在洛仑兹力的作用下金属套筒径向向内箍缩内爆的物理过程。1973年,Turchi等[1]首次提出磁驱动固体套筒内爆的概念。自20世纪90年代以来,磁驱动固体套筒实验被广泛应用于高压状态方程[2]、材料本构[3]、层裂损伤[4]、磁瑞利-泰勒(Magneto-Rayleigh-Taylor,MRT)不稳定性发展[5–6]、Richtmyer-Meshkov(RM)不稳定性发展[7]等研究。
磁驱动固体套筒实验涉及热扩散、磁扩散、焦耳加热、弹塑性、断裂、层裂等物理过程,并伴有大变形、界面不稳定性等现象。磁驱动固体套筒理论有薄壳模型[8–10]、不可压缩模型[11–13]、电作用量-速度模型[14–15]、全电路模型[15]和磁流体力学模型[16–17]等。这些理论模型已被用于脉冲功率装置、磁驱动固体套筒实验的模拟、设计和研究[7–17]。阚明先等[17]采用二维磁流体力学程序MDSC2模拟回流罩结构磁驱动固体套筒实验时发现,根据回流罩结构磁驱动固体套筒实验测量的电流或回路电流不能直接模拟磁驱动固体套筒,模拟的套筒速度总是比测量速度大,即回路电流并不完全从固体套筒表面流过。回路电流与固体套筒上通过的电流之间存在一个电流系数。由于MDSC2程序[17]以外的理论计算或数值模拟都未提到电流系数,因此,本研究采用其他理论模型对磁驱动固体套筒实验进行模拟,分析回路电流与通过固体套筒的电流之间的关系,通过模拟分析不同回流罩结构固体套筒实验,进一步探讨磁驱动固体套筒实验中电流系数的影响因素和变化规律。
大电流脉冲装置上的固体套筒实验通常采用回流罩结构[15, 17–18]。回流罩结构固体套筒实验的初始结构的rz剖面如图1所示,其中,虚线为对称轴。回流罩结构固体套筒实验装置从外到内依次为金属回流罩、绝缘材料和金属套筒,套筒两端为金属电极,上端为阳极,下端为阴极。回路电流从回流罩金属流入,绕过绝缘材料,经过套筒的外表面从阴极流出。电流加载后,电极外面的固体套筒被切割成与阴阳极之间的间隙等高的套筒,在洛仑兹力作用下沿径向向内箍缩。表1为FP-2装置[19]中回流罩结构磁驱动固体套筒实验的套筒参数。图2显示了FP-2装置上不同实验测得的电流变化曲线,电流的上升时间约为
Exp. No. | Liner material | Liner’s inner radius/mm | Liner’s thickness/mm |
1 | Al | 45 | 0.6 |
2 | Al | 30 | 0.6 |
3 | Al | 45 | 1.6 |
4 | Al | 30 | 1.9 |
在薄壳模型、不可压缩模型、电作用量-速度模型、全电路模型、磁流体力学模型等[8–16]适用于磁驱动固体套筒的理论模型中,固体套筒边界的磁感应强度(B)为
B(t)=μ0Iexp(t)2πro |
(1) |
式中:μ0为真空磁导率,Iexp(t)为磁驱动实验测量电流,ro为固体套筒的外半径。
二维磁驱动数值模拟程序MDSC2是由中国工程物理研究院流体物理研究所开发的二维磁流体力学程序[20–21]。该程序已被广泛应用于磁驱动飞片发射、超薄飞片、磁驱动准等熵压缩、磁驱动样品等实验的模拟研究[22–25]。最近,研究人员发现,采用MDSC2程序模拟FP-2装置上的磁驱动固体套筒实验时,基于实验测量的电流或回路电流并不能正确模拟套筒的动力学过程,模拟的套筒速度总是比实验测量值大。为正确模拟FP-2装置上的磁驱动固体套筒实验,需将边界磁感应强度公式[17]修正为
B(t)=μ0fcIexp(t)2πro |
(2) |
式中:fc为回流罩结构rz柱面套筒的电流系数,fc<1。由于文献[17]之外的理论计算或数值模拟中均未提到电流系数fc,因此,需要确定fc是回流罩固体套筒实验固有的,还是MDSC2程序造成的。下面采用固体套筒的不可压缩模型理论确认电流系数是否存在。
在磁驱动固体套筒的不可压缩模型[11–13]中,不考虑套筒的磁扩散,假设磁压只作用于套筒的外表面,且磁压做功全部转化为套筒动能,套筒不可压缩,只作径向运动。设ρ为套筒密度,h为套筒高度,vo为套筒外界面速度,ri、vi分别为套筒内半径和内界面速度,r、v为套筒内某点的径向位置(ri≤r≤ro)和速度,由不可压缩假设,有
rivi=rovo |
(3) |
rv=rovo |
(4) |
则套筒总动能Ek为
Ek=∫roriρπrhv2dr=πρhr2ov2olnrori |
(5) |
由于磁压只作用于套筒的外表面,且磁压做功全部转化为套筒动能,则
dEkdt=2πμ0rohvoB2 |
(6) |
将式(5)代入式(6)并积分,可得
dvodt=−v2oro−1ln(ro/ri)[B22μ0ρro+v2o2ro(1−r2or2i)] |
(7) |
dvidt=−v2iri−1ln(ro/ri)[B22μ0ρri+v2o2ri(1−r2ir2o)] |
(8) |
采用上述不可压缩模型,对固体套筒实验4进行不可压缩模型模拟验证。图3给出了采用不可压缩模型模拟得到的套筒内界面速度。显然,采用回路电流或测量电流直接模拟的套筒速度明显比实验测量速度大,后者是前者的0.82倍,即计算不可压缩模型的边界磁感应强度时不能用式(1),而是用式(2)。不可压缩模型的模拟结果表明,对于回流罩固体套筒实验,回路电流或测量电流与固体套筒上通过的电流之间的电流系数不是MDSC2程序造成的,而是回流罩固体套筒实验固有的。
从第2节的模拟可知,磁驱动固体套筒理论的边界磁感应强度公式中包含电流系数,它反映了有多少回路电流从套筒实际流过。在磁驱动实验中,实验测量的电流是流入回流罩之前的电流,即回路电流,而不是从套筒直接流过的电流。从套筒流过的电流很难被直接测量,因此,电流系数难以预知。回流罩的结构比较复杂,阴阳电极之间连有金属套筒、绝缘材料,金属套筒与绝缘材料之间是真空,回流罩结构的分流机制包括阴阳极间的并联电路分流、漏磁、真空击穿等。事实上,电流系数是通过数值模拟发现的,由磁流体力学程序模拟速度与磁驱动套筒实验测量速度的对比确定。当前的固体套筒实验的模拟都是后验的,无法直接正确预测,因此,研究电流系数的变化规律非常重要,是正确设计和预测固体套筒实验的基础。
由于磁流体力学模型[21, 26]是包含固体弹塑性、热扩散、磁扩散等物理过程的可压缩模型,能够比不可压缩模型更加准确地描述磁驱动固体套筒实验,因此,下面将采用MDSC2程序对FP-2装置上开展的磁驱动固体套筒实验的电流系数变化规律进行研究。
图4给出了实验1~实验4的套筒内界面模拟速度。可以看出,应用式(2)的磁流体力学模型能正确描述磁驱动固体套筒实验。然而,不同的磁驱动固体套筒实验对应的电流系数是不同的。回流罩结构磁驱动固体套筒实验的电流系数和套筒的初始尺寸列于表2。
Exp. No. | Liner’s inner radius/mm | Liner’s thickness/mm | fc |
1 | 45 | 0.6 | 0.87 |
2 | 30 | 0.6 | 0.90 |
3 | 45 | 1.6 | 0.85 |
4 | 30 | 1.9 | 0.88 |
由表2可知:电流系数是常数,不随时间的发展而变化,即电流系数与实验过程无关;对于不同的套筒,电流系数有所不同,说明电流系数与套筒的初始结构有关。由实验1和实验2可知,当套筒厚度相同时,若套筒内半径不同,则电流系数不同,且内半径越大,电流系数越小。对比实验1和实验3,或者实验2和实验4可知,当套筒内半径相同时,若套筒厚度不同,则电流系数不同,且套筒厚度越大,电流系数越小。
采用不可压缩模型验证了回流罩结构磁驱动固体套筒实验中电流系数的存在,即回流罩结构磁驱动固体套筒实验的实验电流/回路电流并不完全从负载套筒的表面通过,实验电流/回路电流与套筒表面流过的电流之间存在一个电流系数。采用包含固体弹塑性、热扩散、磁扩散的磁流体力学模型,对回流罩结构磁驱动固体套筒实验的电流系数进行了确定和分析,结果显示,磁流体力学模型和有电流系数的边界磁感应强度公式能正确模拟回流罩结构磁驱动固体套筒实验。电流系数与套筒结构的关系为:
(1) 不同套筒对应的电流系数不同;
(2) 电流系数与实验过程无关,由套筒初始结构决定;
(3) 套筒厚度相同时,电流系数由套筒内半径决定,套筒内半径越大,电流系数越小;
(4) 套筒内半径相同时,电流系数由套筒厚度决定,套筒厚度越大,电流系数越小。
正确认识磁驱动固体套筒实验的电流系数变化规律,使磁驱动固体套筒实验的磁流体模拟从后验模拟发展成先验的准确设计和预测,有助于降低实验成本,加快柱面相关的实验研究。
[1] |
王海燕. 氦泡对延性金属材料静态和动态力学性质影响的研究 [D]. 成都: 四川大学, 2008.
WANG H Y. The influence of helium bubble to static and dynamic properties of ductile metal [D]. Chengdu: Sichuan University, 2008.
|
[2] |
万发荣. 金属材料的辐照损伤 [M]. 北京: 科学出版社, 1993.
WAN F R. Irradiation damage of metal [M]. Beijing: Science Press, 1993.
|
[3] |
CAWTHORNE C, FULTON E J. Voids in irradiated stainless steel [J]. Nature, 1967, 216(5115): 575–576. doi: 10.1038/216575a0
|
[4] |
WIEDERSICH H. On the theory of void formation during irradiation [J]. Radiation Effects, 1972, 12(1/2): 111–125. doi: 10.1080/00337577208231128
|
[5] |
MANSUR L K. Theory and experimental background on dimensional changes in irradiated alloys [J]. Journal of Nuclear Materials, 1994, 216: 97–123. doi: 10.1016/0022-3115(94)90009-4
|
[6] |
CALDER A F, BACON D J, BARASHEV A V, et al. On the origin of large interstitial clusters in displacement cascades [J]. Philosophical Magazine, 2010, 90(7/8): 863–884. doi: 10.1080/14786430903117141
|
[7] |
TRINKAUS H, SINGH B N. Helium accumulation in metals during irradiation: where do we stand? [J]. Journal of Nuclear Materials, 2003, 323(2/3): 229–242. doi: 10.1016/j.jnucmat.2003.09.001
|
[8] |
王海燕, 祝文军, 邓小良, 等. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究 [J]. 物理学报, 2009, 58(2): 1154–1160. doi: 10.7498/aps.58.1154
WANG H Y, ZHU W J, DENG X L, et al. Plastic deformation of helium bubble and void in aluminum under shock loading [J]. Acta Physica Sinica, 2009, 58(2): 1154–1160. doi: 10.7498/aps.58.1154
|
[9] |
张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06
ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubbles [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06
|
[10] |
REISMAN D B, WOLFER W G, ELSHOLZ A, et al. Isentropic compression of irradiated stainless steel on the Z accelerator [J]. Journal of Applied Physics, 2003, 93(11): 8952–8957. doi: 10.1063/1.1571969
|
[11] |
DÁVILA L P, ERHART P, BRINGA E M, et al. Atomistic modeling of shock-induced void collapse in copper [J]. Applied Physics Letters, 2005, 86(16): 161902. doi: 10.1063/1.1906307
|
[12] |
KUBOTA A, REISMAN D B, WOLFER W G. Dynamic strength of metals in shock deformation [J]. Applied Physics Letters, 2006, 88(24): 241924. doi: 10.1063/1.2210799
|
[13] |
RAICHER E, GLAM B, HENIS Z, et al. Equation of state for aluminum containing helium bubbles [J]. Journal of Applied Physics, 2009, 106(8): 083519. doi: 10.1063/1.3247960
|
[14] |
GLAM B, ELIEZER S, MORENO D, et al. Helium bubbles formation in aluminum: bulk diffusion and near-surface diffusion using TEM observations [J]. Journal of Nuclear Materials, 2009, 392(3): 413–419. doi: 10.1016/j.jnucmat.2009.03.057
|
[15] |
GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163(1/2): 217–224. doi: 10.1007/s10704-009-9437-1
|
[16] |
GLAM B, STRAUSS M, ELIEZER S, et al. The preheating effect on the dynamic strength of aluminium containing helium bubbles [J]. Journal of Physics: Conference Series, 2014, 500(18): 182012. doi: 10.1088/1742-6596/500/18/182012
|
[17] |
GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
|
[18] |
SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. doi: 10.1088/0965-0393/22/2/025012
|
[19] |
SHAO J L, PEI W, HE A M. Compression-induced stacking fault tetrahedra around He bubbles in Al [J]. Journal of Applied Physics, 2014, 116(16): 163516. doi: 10.1063/1.4900784
|
[20] |
HE A M, PEI W, SHAO J L. Effects of defects and microstructure on release melting of shock-loaded copper: atomistic simulations [J]. Journal of Applied Physics, 2018, 123(1): 015901. doi: 10.1063/1.5005000
|
[21] |
LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
|
[22] |
LI B, WANG L, JIAN W R, et al. Irradiation-initiated plastic deformation in prestrained single-crystal copper [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 368: 60–65. doi: 10.1016/j.nimb.2015.12.011
|
[23] |
BRINGA E M, CARO A, WANG Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
|
[24] |
SLIWA M, MCGONEGLE D, WEHRENBERG C, et al. Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum [J]. Physical Review Letters, 2018, 120(26): 265502. doi: 10.1103/PhysRevLett.120.265502
|
[25] |
MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter [J]. Science, 2013, 342(6155): 220–223. doi: 10.1126/science.1239566
|
[26] |
KANEL G I. Unusual behaviour of usual materials in shock waves [J]. Journal of Physics: Conference Series, 2014, 500(1): 012001. doi: 10.1088/1742-6596/500/1/012001
|
[27] |
KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations [J]. International Journal of Plasticity, 2011, 27(8): 1294–1308. doi: 10.1016/j.ijplas.2011.02.008
|
[28] |
YAO S L, PEI X Y, LIU Z L, et al. Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model [J]. Mechanics of Materials, 2020, 140: 103211. doi: 10.1016/j.mechmat.2019.103211
|
[29] |
YAO S L, YU J D, CUI Y N, et al. Revisiting the power law characteristics of the plastic shock front under shock loading [J]. Physical Review Letters, 2021, 126(8): 085503. doi: 10.1103/PHYSREVLETT.126.085503
|
[30] |
唐志平. 冲击相变 [M]. 北京: 科学出版社, 2008.
TANG Z P. Impact phase transition [M]. Beijing: Science Press, 2008.
|
[31] |
DE S, ZAMIRI A R, RAHUL N. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 287–301. doi: 10.1016/J.JMPS.2013.10.012
|
[32] |
LUKYANOV A A. Constitutive behaviour of anisotropic materials under shock loading [J]. International Journal of Plasticity, 2008, 24(1): 140–167. doi: 10.1016/j.ijplas.2007.02.009
|
[33] |
BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
|
[34] |
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011.
PAN J S, TONG J M, TIAN M B. Fundamentals of materials science [M]. Beijing: Tsinghua University Press, 2011.
|
[35] |
ROOS A, DE HOSSON J T M, VAN DER GIESSEN E. A two-dimensional computational methodology for high-speed dislocations in high strain-rate deformation [J]. Computational Materials Science, 2001, 20(1): 1–18. doi: 10.1016/S0927-0256(00)00117-8
|
[36] |
HIRTH J P, ZBIB H M, LOTHE J. Forces on high velocity dislocations [J]. Modelling and Simulation in Materials Science and Engineering, 1999, 6(2): 165.
|
[37] |
KUKSIN A Y, YANILKIN A V. Atomistic simulation of the motion of dislocations in metals under phonon drag conditions [J]. Physics of the Solid State, 2013, 55(5): 1010–1019. doi: 10.1134/S1063783413050193
|
[38] |
AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum [J]. International Journal of Plasticity, 2012, 32/33: 134–154. doi: 10.1016/j.ijplas.2011.11.002
|
[39] |
AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
|
[40] |
于继东. 冲击相变动力学过程的相场模型研究 [D]. 绵阳: 中国工程物理研究院, 2014.
YU J D. Phase field study on the kinetics in shock-induced phase transitions [D]. Mianyang: China Academy of Engineering Physics, 2004.
|
[41] |
CHU D Y, LI X, LIU Z L. Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling [J]. International Journal of Fracture, 2017, 208(1): 115–130. doi: 10.1007/s10704-017-0220-4
|
[42] |
WANG T, LIU Z L, CUI Y N, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part Ⅰ. theory and model calibration [J]. Engineering Fracture Mechanics, 2020, 232: 107028. doi: 10.1016/j.engfracmech.2020.107028
|
[43] |
WANG T, LIU Z L, CUI Y N, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part Ⅱ. dynamic collapse of thick-walled cylinder [J]. Engineering Fracture Mechanics, 2020, 231: 107027. doi: 10.1016/j.engfracmech.2020.107027
|
[44] |
YU J D, WANG W Q, WU Q. Nucleation and growth in shock-induced phase transitions and how they determine wave profile features [J]. Physical Review Letters, 2012, 109(11): 115701. doi: 10.1103/PhysRevLett.109.115701
|
[45] |
YAO S L, PEI X Y, YU J D, et al. Scale dependence of thermal hardening of fcc metals under shock loading [J]. Journal of Applied Physics, 2020, 128(21): 215903. doi: 10.1063/5.0026226
|
[46] |
GURRUTXAGA-LERMA B, BALINT D S, DINI D, et al. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics [J]. Physical Review Letters, 2015, 114(17): 174301. doi: 10.1103/PhysRevLett.114.174301
|
[1] | SHI Xinhui, YANG Lei, YANG Xue, KANG Hongliang, YUAN Wenshuo, LIU Fusheng. Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814 |
[2] | WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251037 |
[3] | HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757 |
[4] | MI Xingyu, ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Effect of FCC Metal Crystal Orientation on Void Growth under High Strain Rate Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024204. doi: 10.11858/gywlxb.20220711 |
[5] | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[6] | YU Jidong, YAO Songlin, WU Qiang. Advances of Phase Field Modeling of Martensitic Phase Transformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040109. doi: 10.11858/gywlxb.20210772 |
[7] | LI Yinghua, CHANG Jingzhen, ZHANG Lin, SONG Ping. Experimental Investigation of Spall Damage in Pure Aluminum with Helium Bubbles[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770 |
[8] | LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542 |
[9] | ZHAO Weiye, ZHAO Dan, LÜ Pin, JIN Tao, MA Shengguo. Finite Element Calculation of Polycrystalline Shear-Compression Specimens with Static Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024203. doi: 10.11858/gywlxb.20190836 |
[10] | SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695 |
[11] | LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551 |
[12] | JIN Ke, WU Qiang, LI Jia-Bo, ZHOU Xian-Ming, YE Su-Hua, LI Jun. Simultaneous Measurement of Sound Velocity and Temperature of Single Crystal NaCl under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 707-717. doi: 10.11858/gywlxb.2017.06.005 |
[13] | WANG Hong-Bo, WANG Qi-Hua, LU Yong-Gang, LIANG Bin. Ignition Characteristics of PBX Explosives at Meso-Structural Level under Shock and Ramp Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 27-34. doi: 10.11858/gywlxb.2017.01.005 |
[14] | GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011 |
[15] | ZHANG Wei, YE Nan, WEI Gang, HUANG Wei. Effect of Shock Compression on Germination Rate of Plant Seeds[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018 |
[16] | LIU Zhi-Ming, CUI Tian, HE Wen-Jong, ZOU Guang-Tian, WEI Meng-Fu, CHEN Chang-An. Pressure Effects on the Behavior of Helium in Niobium[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001 |
[17] | QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005 |
[18] | GONG Ping, TANG Zhi-Ping, SHEN Zhao-Wu. Experimental Investigation and DEM Simulation of Mass Mixing under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 21-26 . doi: 10.11858/gywlxb.2004.01.005 |
[19] | WEN Dian-Ying, LIN Qi-Wen. Dielectric Breakdown of Ferroelectric Ceramics PZT-95/5 under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 199-206 . doi: 10.11858/gywlxb.1998.03.006 |
[20] | WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003 |
Exp. No. | Liner material | Liner’s inner radius/mm | Liner’s thickness/mm |
1 | Al | 45 | 0.6 |
2 | Al | 30 | 0.6 |
3 | Al | 45 | 1.6 |
4 | Al | 30 | 1.9 |
Exp. No. | Liner’s inner radius/mm | Liner’s thickness/mm | fc |
1 | 45 | 0.6 | 0.87 |
2 | 30 | 0.6 | 0.90 |
3 | 45 | 1.6 | 0.85 |
4 | 30 | 1.9 | 0.88 |