Citation: | GU Xiaoyu, LIU Lei. First-Principles Calculation on Crystal Structure and Elastic Properties of Py-FeO2, Py-FeOOH and ε-FeOOH under High Pressures[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 012201. doi: 10.11858/gywlxb.20210789 |
[1] |
SCHMIDT M W, POLI S. 4.19-devolatilization during subduction [J]. Treatise on Geochemistry (2nd ed), 2014, 4: 669–701. doi: 10.1016/B978-0-08-095975-7.00321-1
|
[2] |
POLI S, SCHMIDT M W. Petrology of subducted slabs [J]. Annual Review of Earth & Planetary Sciences, 2002, 30: 207–235.
|
[3] |
LIN Y H, HU Q Y, MENG Y, et al. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle [J]. Proceedings of the National Academy of Sciences, 2019, 117(1): 184–189.
|
[4] |
LI Y, VOADLO L, SUN T, et al. The Earth’s core as a reservoir of water [J]. Nature Geoscience, 2020, 13(6): 1–6.
|
[5] |
HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
|
[6] |
HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498. doi: 10.1073/pnas.1620644114
|
[7] |
NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
|
[8] |
BO G J, KIM D Y, JI H S. Metal-insulator transition and the role of electron correlation in FeO2 [J]. Physical Review B, 2017, 95: 075144. doi: 10.1103/PhysRevB.95.075144
|
[9] |
ZHANG X L, NIU Z W, TANG M, et al. First-principles thermoelasticity and stability of pyrite-type FeO2 under high pressure and temperature [J]. Journal of Alloys & Compounds, 2017, 719: 42–46.
|
[10] |
HUANG S X, QIN S, WU X. Elasticity and anisotropy of the pyrite-type FeO2H-FeO2 system in Earth’s lowermost mantle [J]. Journal of Earth Science, 2019, 30: 1293–1301.
|
[11] |
LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
|
[12] |
YUAN L, OHTANI E, IKUTA D, et al. Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth’s mantle and core [J]. Geophysical Research Letters, 2018, 45(3): 1330–1338. doi: 10.1002/2017GL075720
|
[13] |
ZHUANG Y K, CUI Z X, ZHANG D Z, et al. Experimental evidence for partially dehydrogenated ε-FeOOH [J]. Crystals, 2019, 9(7): 356. doi: 10.3390/cryst9070356
|
[14] |
DENG J, KARKI B B, GHOSH D B, et al. First-principles study of FeO2Hx solid and melt system at high pressures: implications for ultralow-velocity zones [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4566–4575.
|
[15] |
HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14: 174–178. doi: 10.1038/s41561-021-00696-2
|
[16] |
THOMPSON E C, CAMPBELL A J, TSUCHIYA J. Elastic properties of the pyrite-type FeOOH-AlOOH system from first principles calculations [J]. Geochemistry Geophysics Geosystems, 2021.
|
[17] |
BENDELIANI N A, BANEYEVA M I, PORYVKIN D S. Synthesis of new modification of FeO(OH), stable at high pressurere [J]. Geochemistry International, 1972, 9: 589–590.
|
[18] |
PERNET M, JOUBERT J C, BERTHET-COLOMINAS C. Etude par diffraction neutronique de la forme haute pression de FeOOH [J]. Solid State Communications, 1975, 17(12): 1505–1510. doi: 10.1016/0038-1098(75)90983-7
|
[19] |
CHENAVAS J, JOUBERT J C, CAPPONI J J, et al. Synthese de nouvelles phases denses d'oxyhydroxydes M3+OOH des metaux de la premiere serie de transition, en milieu hydrothermal à tres haute pression [J]. Journal of Solid State Chemistry, 1973, 6(1): 1–15. doi: 10.1016/0022-4596(73)90199-0
|
[20] |
BOLOTINA N B, MOLCHANOV V N, DYUZHEVA T I, et al. Single-crystal structures of high-pressure phases FeOOH, FeOOD, and GaOOH [J]. Crystallography Reports, 2008, 53(6): 960–965. doi: 10.1134/S1063774508060084
|
[21] |
MAJZLAN J, GREVEL K D, NAVROTSKY A. Thermodynamics of Fe oxides: Part Ⅱ. enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3) [J]. American Mineralogist, 2003, 88(5/6): 855–859. doi: 10.2138/am-2003-5-614
|
[22] |
GLEASON A E, JEANLOZ R, KUNZ M. Pressure-temperature stability studies of FeOOH using X-ray diffraction [J]. American Mineralogist, 2008, 93(11/12): 1882–1885. doi: 10.2138/am.2008.2942
|
[23] |
SUZUKI A. High-pressure X-ray diffraction study of ε-FeOOH [J]. Physics and Chemistry of Minerals, 2009, 37(3): 153–157.
|
[24] |
SUZUKI A. Pressure-volume-temperature equation of state of ε-FeOOH to 11 GPa and 700 K [J]. Journal of Mineralogical and Petrological Sciences, 2016, 111(6): 420–424. doi: 10.2465/jmps.160719c
|
[25] |
OTTE K, ENTCHEVA R, SCHMAHL W W, et al. Pressure-induced structural and electronic transitions in FeOOH from first principles [J]. Physical Review B, 2009, 80(20): 205116. doi: 10.1103/PhysRevB.80.205116
|
[26] |
GLEASON A E, QUIROGA C E, SUZUKI A, et al. Symmetrization driven spin transition in ε-FeOOH at high pressure [J]. Earth and Planetary Science Letters, 2013, 379: 49–55. doi: 10.1016/j.jpgl.2013.08.012
|
[27] |
THOMPSON E C, CAMPBELL A J, TSUCHIYA J. Elasticity of ε-FeOOH: seismic implications for Earth’s lower mantle [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5038–5047. doi: 10.1002/2017JB014168
|
[28] |
THOMPSON E C, DAVIS A H, NIGEL M B, et al. Phase transitions in ε-FeOOH at high pressure and ambient temperature [J]. American Mineralogist, 2020, 105(12): 1769–1777. doi: 10.2138/am-2020-7468
|
[29] |
HU Y, KIEFER B, PLONKA A, et al. Compressional behavior of end-member and aluminous iron-bearing diopside at high pressure from single-crystal X-ray diffraction and first principles calculations [J]. Physics and Chemistry of Minerals, 2019, 46(10): 977–986. doi: 10.1007/s00269-019-01056-8
|
[30] |
MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
|
[31] |
KVASHNIN A G, KRUGLOV I A, SEMENOK D V, et al. Iron superhydrides FeH5 and FeH6: stability, electronic properties, and superconductivity [J]. The Journal of Physical Chemistry C, 2018, 122(8): 4731–4736. doi: 10.1021/acs.jpcc.8b01270
|
[32] |
ZHANG J, HAO B, ZHANG X, et al. The influence of microstructure and emissivity of NiO-Doped Fe3O4 spinel structure on near-and middle-infrared radiation [C]//LI B, LI J, IKHMAYIES S, et al. Characterization of Minerals, Metals, and Materials, 2019: 69−77 .
|
[33] |
CUI W Y, ZHANG Y B, CHEN J H, et al. Comparative study on surface structure, electronic properties of sulfide and oxide minerals: a first-principles perspective [J]. Minerals, 2019, 9(6): 329. doi: 10.3390/min9060329
|
[34] |
LU L, YU S. Metal distribution in iron-nickel sulfide mineral pentlandite: first-principles study [J]. Chemical Physics Letters, 2019, 736: 136786. doi: 10.1016/j.cplett.2019.136786
|
[35] |
DENG Z, TONG X, HUANG L, et al. Density functional theory study of H2O adsorption on different sphalerite surfaces [J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 82–88.
|
[36] |
KUROKI Y, KAWANO S, IIKUBO S, et al. First-principles study of chemical driving force for face centered cubic to hexagonal close packed martensitic transformation in hydrogen-charged iron [J]. Metallurgical and Materials Transactions A, 2019, 50: 3019–3023.
|
[37] |
SANTOS P, COUTINHO J, ÖBERG S. First-principles calculations of iron-hydrogen reactions in silicon [J]. Journal of Applied Physics, 2018, 123(24): 245703. doi: 10.1063/1.5039647
|
[38] |
SONG Y L, HE K H, SUN J, et al. Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study [J]. Scientific Reports, 2019, 9(1): 4172. doi: 10.1038/s41598-019-40454-4
|
[39] |
LEONOV I, ROZENBERG G K, ABRIKOSOV I A. Charge disproportionation and site-selective local magnetic moments in the post-perovskite-type Fe2O3 under ultra-high pressures [J]. NPJ Computational Materials, 2019, 5(1): 1–7. doi: 10.1038/s41524-019-0225-9
|
[40] |
CLARK S J, SEGALLII M D, PICKARDII C J, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallographie-Crystalline Materials, 2005, 220: 567–570. doi: 10.1524/zkri.220.5.567.65075
|
[41] |
LIU L, YANG L X, YANG G S, et al. The effect of Fe on crystal structure and elasticity superhydous phase H under high pressure by first-principles calculations [J]. Annals of Geophysics, 2020, 63(6): PE672.
|
[42] |
LIU L, YI L, LIU H, et al. First principles calculation of the nonhydrostatic effects on structure and Raman frequency of 3C-SiC [J]. Scientific Reports, 2018, 8(1): 11279. doi: 10.1038/s41598-018-29666-2
|
[43] |
LIU L, YI L, LIU H, et al. The structure and elasticity of phase B silicates under high pressure by first principles simulation [J]. Physics B, 2018, 27(4): 047402.
|
[44] |
GONCHAROV A F, STRUZHKIN V V, SOMAYAZULU M S, et al. Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase [J]. Science, 1996, 273(5272): 218–220. doi: 10.1126/science.273.5272.218
|
[45] |
TSUCHIYA J. First-principles study of hydrogen bond symmetrization of phase D under high pressure [J]. American Mineralogist, 2005, 90(1): 44–49. doi: 10.2138/am.2005.1628
|
[46] |
SANO-FURUKAWA A, KOMATSU K, VANPETEGHEM C B, et al. Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond [J]. American Mineralogist, 2008, 93(10): 1558–1567. doi: 10.2138/am.2008.2849
|
[47] |
ERREA I, CALANDRA M, PICKARD C J, et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system [J]. Nature, 2016, 532: 81–84. doi: 10.1038/nature17175
|
[48] |
TSUCHIYA J, TSUCHIYA T. First-principles prediction of a high-pressure hydrous phase of AlOOH [J]. Physical Review B, 2011, 83(5): 054115. doi: 10.1103/PhysRevB.83.054115
|
[49] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
|
[50] |
NYE J F. Physical properties of crystals: their representation by tensors and matrices [M]. Oxford: Clarendon Press, 1957.
|
[1] | MA Gui-Cun, ZHANG Qi-Li, LU Guo. Application of Statistical Self-consistent Field INFERNO Model to Equation of State and Hugoniot of Gold[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 1-7. doi: 10.11858/gywlxb.2017.01.001 |
[2] | HAO Long, WANG Xiang, WANG Qing-Song, KANG Qiang, HUANG Jin. Dynamic Response and Optical Properties of PMMA under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 579-584. doi: 10.11858/gywlxb.2017.05.011 |
[3] | YU Chao, REN Hui-Lan, NING Jian-Guo. Molecular Dynamic Simulation on Shock Plasticity Behaviour of Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 211-215. doi: 10.11858/gywlxb.2013.02.007 |
[4] | ZENG Dai-Peng, CHEN Jun, TAN Duo-Wang. Experiment Research on the Hugoniot of JB-9014 Explosive Over-Driven Detonation Product[J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 76-80 . doi: 10.11858/gywlxb.2010.01.014 |
[5] | FU Hua, TAN Duo-Wang, LI Jin-He, LI Tao. Hugoniot Relation of Unreacted JOB-9003 Explosive[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 427-432 . doi: 10.11858/gywlxb.2009.06.005 |
[6] | LI Qiao-Yan, SHI Shang-Chun, YANG Jin-Wen, SUN Yue. Shock Compression Behavior of Nd2Fe14B[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 210-214 . doi: 10.11858/gywlxb.2007.02.016 |
[7] | WANG Qing-Song, LAN Qiang, DAI Cheng-Da. Effect of the Preheated Flyer on Hugoniot Measurements[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 439-443 . doi: 10.11858/gywlxb.2007.04.018 |
[8] | HUANG Hai-Jun, JING Fu-Qian, CAI Ling-Cang, BI Yan, MENG Chuan-Min. Studies of the Hugoniot Curve for Fe/FeO/FeS Mixture[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 139-144 . doi: 10.11858/gywlxb.2006.02.005 |
[9] | GUI Yu-Lin, WANG Yan-Ping, LIU Cang-Li, SUN Cheng-Wei, ZHANG Ke-Ming. An Experimental Study on Shock Response of No-Co Steel[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 127-131 . doi: 10.11858/gywlxb.2005.02.005 |
[10] | DAI Cheng-Da, WANG Xiang, TAN Hua. Evaluation for Uncertainty of Particle Velocity in Hugoniot Measurements[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 113-119 . doi: 10.11858/gywlxb.2005.02.003 |
[11] | LIU Fu-Sheng, JING Fu-Qian. Differential Equations and Their Solutions for Hugoniot Relation of Porous Materials along the Isobaric Path[J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 10-16 . doi: 10.11858/gywlxb.2004.01.003 |
[12] | CHEN Qi-Feng, CAI Ling-Cang, CHEN Dong-Quan, JING Fu-Qian. Theoretical Hugoniot Curves of Liquid Deuterium[J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 61-64 . doi: 10.11858/gywlxb.2002.01.010 |
[13] | SUN Yue, MENG Chuan-Min, WU Guo-Dong, YANG Xiang-Dong. Study on the Shock Compression Properties of Mixed Liquid N2 and CO[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 217-223 . doi: 10.11858/gywlxb.2002.03.010 |
[14] | MENG Chuan-Min, SHI Shang-Chun, DONG Shi, SUN Yue, JIAO Rong-Zhen, YANG Xiang-Dong. Theoretical Calculation for Shock Compressional Properties of Liquid Nitrogen[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 213-216 . doi: 10.11858/gywlxb.2002.03.009 |
[15] | YANG Xiang-Dong, HU Dong, JING Fu-Qian. Studies of EOS for Detonation Products: Liquid Nitrogen, Liquid Helium and Water[J]. Chinese Journal of High Pressure Physics, 1999, 13(2): 93-102 . doi: 10.11858/gywlxb.1999.02.003 |
[16] | SHI Shang-Chun, DONG Shi, HUANG Yue, LIU Fu-Sheng, SUN Yue. Study on Shock Compression of Liquids Nitrogen and Carbon Monoxide[J]. Chinese Journal of High Pressure Physics, 1999, 13(4): 295-300 . doi: 10.11858/gywlxb.1999.04.010 |
[17] | YU Chuan, CHI Jia-Chun, LIU Wen-Han, LI Liang-Zhong, YANG Shu-Ying. Shock Hugoniot Relation of JB-9001 Insensitive High Explosive[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 72-77 . doi: 10.11858/gywlxb.1998.01.012 |
[18] | YANG Xiang-Dong, XIE Wen, WU Bao-Jian, HU Dong, JING Fu-Qian. Theoretical Calculation for the Hugoniot Curves of Liquid Nitrogen[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 1-7 . doi: 10.11858/gywlxb.1998.01.001 |
[19] | YANG Xiang-Dong, WU Bao-Jian, HU Dong, JING Fu-Qian. A Theoretical Calculation for the Hugoniots and Temperatures of Water Using the Exponential-Six Reference Potential[J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 98-102 . doi: 10.11858/gywlxb.1997.02.004 |
[20] | YANG Xiang-Dong, WU Bao-Jian, XIE Wen, HU Dong, JING Fu-Qian. Theoretical Calculation for the Hugoniot Curves and Studies on the Effective Two-Body Potential of Helium[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 175-181 . doi: 10.11858/gywlxb.1997.03.003 |