Loading [MathJax]/jax/output/SVG/jax.js
LUO Kaiwen, LI Q. M.. Damage Boundary of Crystal Oscillator under Shock Environment[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572
Citation: LI Wanghui, FENG Lanxi, ZHANG Xiaoqing, YAO Xiaohu. Brief Review of Research Progress on the Deformation, Damage and Failure of Silicon Carbide under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040103. doi: 10.11858/gywlxb.20210783

Brief Review of Research Progress on the Deformation, Damage and Failure of Silicon Carbide under Extreme Conditions

doi: 10.11858/gywlxb.20210783
  • Received Date: 23 Apr 2021
  • Rev Recd Date: 03 Jun 2021
  • As an important ceramic and semiconductor material, silicon carbide has important engineering and scientific value in application fields such as national defense, military, aerospace, and high-pressure material science. This paper summarized the physical and mechanical behaviors, and characteristics of silicon carbide under dynamic loading, such as deformation, damage and failure, providing a research progress in the deformation and failure of silicon carbide under different loading conditions and microstructures from both the experimental studies and computational simulations. Then the paper summarized some existing problems related to the dynamic response of silicon carbide materials, and proposed several important development directions in this field, in order to provide a useful reference for the research of related research groups.

     

  • 作为各种电子装备中最典型的机电耦合器件之一,石英晶体振荡器是设备中不可或缺的高稳定频率源,是整个电子系统的关键元件,广泛地应用于各种导航、通信、测量等仪器设备中。随着科技发展与需求的增长,工业部门要求晶体振荡器(晶振)在更严苛的环境中也能够稳定可靠地工作,而晶振因其结构与材料的特点恰恰对振动冲击环境极其敏感[1-3],过量的冲击振动会引起晶振输出频率偏移,甚至导致组件发生物理破坏而失效[4-5]。在一些航空航天装备中,由各种因素导致的冲击环境是很难避免的。如Moening[6]统计分析了1963~1985年间因振动和冲击导致的航天飞行故障案例,发现由火工品爆炸冲击引起的运载火箭飞行失效比例非常高,在88起故障案例中有41起由此引起,并且其中的70%最终造成巨大损失。虽然航天器上火工品的爆炸冲击一般不会引起主结构的变形或损坏,但是对晶体、陶瓷、玻璃外壳等脆性材料而言却足够严酷,有可能导致其结构碎裂而失效。

    相关研究表明,在高加速度冲击下,由于芯片内部材料与可动组件的脆弱性[7]、缓冲材料性能不足[8]等因素,一些电子元件很容易发生结构损伤而失效。为保证这类元件在工作中的安全,人们一方面研究元件在冲击环境下的响应特性与恰当的隔振缓冲装置[9-10],减弱冲击环境对元件的作用;另一方面总结冲击环境测试评估方法与规范[11-12],通过冲击环境测试确认元件的可靠性。为了评估冲击环境的严酷程度,Gaberson等[13-14]指出伪速度冲击响应谱较加速度谱更有优势,并利用半正弦载荷模拟了多种类型爆炸冲击环境。Irvine[15]总结了电子器件在冲击环境下的失效理论和试验研究结果,给出了多种结构下材料的力学常数与失效阈值。Li等[16]根据单自由度系统的响应特点,分析了结构的损伤边界形式。上述研究为电子产品在冲击环境下的可靠性评估提供了一种可行的途径。本研究借鉴单自由度系统研究思路,改进文献[16]中损伤边界在低频段的临界参数选取方式,结合贴片晶振的典型结构,分析其易损组件的结构特点,通过施加与实际冲击信号更接近的正弦衰减信号来研究结构的动力学响应,以获得各频率的临界载荷与临界冲击谱,通过真实测得的冲击载荷验证改进后损伤边界的有效性。

    贴片晶振是利用石英晶体的压电效应制成的一种电子器件,可为系统提供高稳定的频率源。它主要由石英晶片、基座、上盖板、导电胶、电极镀层以及内部电路构成,如图1所示。其中,石英晶片是一片按一定方位角从石英晶体上切下的薄片,在晶片的两面涂敷电极,通过导电胶固定在基座上,是晶振的核心组件。

    图  1  贴片晶振的结构
    Figure  1.  Structure of surface mounted device (SMD) crystal oscillator

    在冲击环境下,电子器件的失效一般可分为结构失效和性能失效,其中结构失效又可根据失效机理分为材料破坏(材料的应力、应变超出其容许极限)和大位移失效(如大位移导致各组件间设计外的接触、碰撞等)。如图2所示,晶振在受到加速度冲击作用时,内部依靠导电胶支承的晶片可能会由于端部应力过大而发生断裂[4-5],从而导致晶振乃至整个系统的不可逆性失效。这也是晶振在冲击环境中经常发生的损伤模式。另外,在极端温度条件下,冲击载荷会导致导电胶破坏或脱胶,此种情况不在本研究讨论范围。

    图  2  晶振在冲击下的断裂部位[4]
    Figure  2.  Fracture position of crystal under impact loading[4]

    在考核器件和设备在冲击环境下的可靠性时,一般用冲击响应谱[17]表征环境的严酷度。它用载荷作用在一系列不同频率单自由度系统上的效果,即结构对冲击载荷的响应来描述冲击环境。当一个单自由度质量弹簧系统受到给定冲击激励时,其响应峰值为其固有频率的函数。由此函数绘成的图形即为冲击响应谱。按照所选用的单自由度系统响应参数,冲击响应谱可分为绝对加速度谱、伪速度谱、相对位移谱等。

    对于如图3所示的无阻尼单自由度系统,受到基础加速度激励¨y(t)时,若记z=xy为振子与基础的相对位移,ω=k/m为系统无阻尼固有圆频率(km分别为无阻尼单自由度系统的刚度与质量),则其运动方程可写为

    图  3  单自由度质量弹簧系统
    Figure  3.  Single-degree-of-freedom system with mass, stiffness system
    ¨z+ω2z=¨y (1)

    解得振子的相对位移、相对速度、绝对加速度分别为

    z(t)=1ωt0¨y(τ)sinω(tτ)dτ (2)
    ˙z(t)=t0¨y(τ)cosω(tτ)dτ (3)
    ¨x(t)=ωt0¨y(τ)sinω(tτ)dτ (4)

    对于一系列这样的单自由度系统,所得的绝对加速度谱(a)、伪速度谱(vp)与相对位移谱(dr)与其所选取的响应参数分别为

    {a(f)=max(|¨x(t)|)vp(f)=max(|ωz(t)|)dr(f)=max(|z(t)|) (5)

    式中:f=ω/2π为单自由度系统的固有频率。它们之间有以下关系

    a(f)2πf=vp(f)=2πfdr(f) (6)

    根据结构的应力损伤准则,当结构某处的材料应力大于其临界应力时,可以认为结构发生损坏,无法再满足正常工作需求。考虑如图3所示的单自由度系统。Li等[16]对不同频率载荷作用下结构的应力响应特点进行了分析。当冲击载荷频率显著低于结构频率时,相当于考察一个质量块通过刚度很大的弹簧连接件施加加速度激励时的响应。这种情况下质量块的运动与激励几乎一致,作用于质量块的力主要由质量块运动导致的惯性力产生。由于惯性力与质量块的加速度一一对应,且质量块的最大加速度与激励载荷的最大加速度近似,因而作用于质量块的力的大小可以用式(4)中的绝对加速度表征,在冲击响应谱上表现为绝对加速度谱的谱值大小。结构中的最大应力(σmax)为

    σmax=mS¨xmax=mSa (7)

    式中:S为弹簧连接件的连接面积。当冲击载荷频率显著高于结构频率时,相当于考察一个大质量块通过刚度很小的弹簧连接件施加加速度激励时的响应。这种情况下质量块对激励的响应很小,而弹簧连接件的变形较大,作用于质量块的力主要由弹簧连接件变形导致的弹力引起。弹力的大小可以用式(2)中的相对位移表征,在冲击响应谱上表现为相对位移谱的谱值大小。结构中的最大应力为

    σmax=kSzmax=kSdr (8)

    另一方面,在实际的微小结构中,冲击下的响应特点由3个时间尺度及其相互关系决定[18],即弹性波的渡越时间τA、结构的振动周期T和冲击载荷的持续时间 tl。当冲击持续时间tl大于弹性波渡越时间τA及结构振动周期T时,可用准静态理论来分析结构在冲击下的响应;当冲击持续时间tl小于弹性波的渡越时间τA及结构振动周期T时,需要考虑应力波在结构中的传播,用应力波理论来分析结构响应。

    因此,当冲击载荷频率大于结构频率时(即冲击载荷特征时间与结构振动周期有tl<T),应用应力波理论来分析结构响应更恰当。在材料的弹性范围内,根据一维弹性波理论[19],材料的应力响应σ和质点与基础之间的相对速度v之间的关系为

    σ=ρcv (9)

    式中:ρ为材料的质量密度,c为材料中的弹性波速。在冲击载荷频率与结构频率相当的范围内(即图4中的振动区),考虑到不同的结构形式对应力波在结构中传播的影响,引入与结构形状有关的形状系数κ,则结构中某处的最大应力响应与最大相对速度vmax的关系可写为[13, 20]

    图  4  相对时间尺度与结构冲击响应的分析方法[18]
    Figure  4.  Relative time scale and the analysis method of structural impact response[18]
    σmax=κρcvmax (10)

    定义结构某点的最大伪速度响应与最大相对速度响应的比值为加载因子λ

    λ=vpvmax=max(|ωz(t)|)max(|˙z(t)|) (11)

    则式(10)可改写为

    σmax=κρcvp/λ (12)

    由于式(9)是式(10)的特殊形式(κ=1),因此式(12)适用于图4中的整个非准静态区(即当冲击载荷频率大于或等于结构频率时)。在式(7)、式(8)及式(12)中,若已知结构的临界应力σc,则可以在冲击响应谱图上确定各临界谱的谱值acdrcvpc

    ac=Smσc (13)
    drc=Skσc (14)
    vpc=λκρcσc (15)

    根据以上讨论,当冲击载荷频率fp小于结构频率f时,临界谱值由式(13)给出;当冲击载荷频率大于或等于结构频率时,临界谱值由式(14)与式(15)的较小值给出,即

    B(f)={ac2πffp<fmin(2πfdrc,vpc)fpf (16)

    式(16)对Li等[16]提出的冲击响应谱损伤边界作了进一步改进。需要指出的是,在工程实际中,结构频率与冲击载荷频率并不是一个可以直接比较的值,并且结构件也不是单自由度的,而是具有多阶固有频率,同时冲击载荷信号也包含各种频率成分,其主导频率往往是一个频率范围。为了突出主要矛盾,以上提到的结构频率视为结构被冲击载荷所激起有效质量最大的模态所对应的频率,冲击载荷频率为其主导频率范围的上界。

    结合贴片晶振的典型结构,利用ABAQUS软件建立仿真模型,如图5所示,各组件的尺寸见表1

    图  5  晶振结构的有限元模型
    Figure  5.  Finite element model of SMD crystal oscillator
    表  1  模型尺寸
    Table  1.  Geometrical dimensions of the model
    Structure moduleLength/mmWidth/mmHeight/mmStructure moduleLength/mmWidth/mmHeight/mm
    Crystal plate5.03.20.08Pad1.41.10.05
    Conductive adhesive0.40.40.20Lid6.04.00.10
    Electrode2.01.50.02Circuit block 14.02.20.30
    Packaging base7.05.01.80Circuit block 20.31.20.50
    下载: 导出CSV 
    | 显示表格

    为了获得更高的数值精度,对晶片组件及封装结构中相关区域的网格进行细化。对于晶片网格数与总单元数分别为51200、109352的模型,若将单元数增加一倍,则相同条件下模型应力与结构基频的相对偏差均小于1%,可以认为,该有限元模型是足够准确的。为模拟材料的阻尼作用,在ABAQUS中设定线性体黏度参数为0.06,二次体黏度参数为1.2。

    由于常用导电胶的玻璃态转化温度在100 ℃左右,室温下处于玻璃态,因此仿真过程中选用线弹性模型进行模拟。石英晶体的抗压屈服应力为1 GPa,而抗拉强度受拉伸形式及样品形状的影响较大,其值为40~70 MPa。以下计算中,抗拉强度取临界值40 MPa,即当晶片某处应力大于该临界值时,视为结构发生破坏而导致晶振失效。有限元模型的材料参数如表2所示。

    表  2  有限元模型中的材料参数
    Table  2.  Material parameters in finite element model
    ModuleMaterialElastic modulus/GPaDensity/(g·cm−3)Poisson’s ratioTensile strength/MPa
    Crystal plateQuartz[Cpq][21]2.6540
    Integrated circuitSilicon13.02.330.28
    ElectrodeSilver73.210.530.38
    Packaging basePhenolic resin2.0–2.91.25–1.300.35–0.38
    LidPackfong100.88.700.37
    Conductive adhesiveEpoxy polymer2.92.520.34
    PadSnAgCu solder41.68.740.40
    下载: 导出CSV 
    | 显示表格

    对于表2中没有确定值的参数,在有限元建模过程中均取其取值范围的中间值。石英晶体的弹性常数由以下矩阵给定

    [Cpq]=(86.748.2527.153.66008.25129.777.425.700027.157.42102.839.92003.665.709.9238.6100000068.812.5300002.5329.01)GPa (17)

    考虑到实际试验中载荷的频率范围以及可能的失效部件,在0.5~15 kHz频率范围内对晶片组件进行模态分析,考察其动态特性,分析晶片及相关组件的模态时,将导电胶与基座相连的表面全约束。表3列出了晶片及相关组件的前15阶模态以及各阶模态在法向(垂直于晶片所在平面的方向)激起的有效质量。若将第1阶模态激起的有效质量作为参考标准,各阶模态的有效质量与该标准的比值设为比例系数P,可见在晶片的法向,第1、3、5阶模态所激起的有效质量明显较大,而且这3阶激起的有效质量占总体的94.87%。可以认为,当该结构受到法向冲击载荷时,2.585、16.898、42.546 kHz这3阶频率的模态叠加基本反映了结构响应,并且第1阶模态的有效质量远大于其他模态,因此认为响应中结构的主要频率f1 = 2.585 kHz。

    表  3  晶片的各阶模态频率
    Table  3.  Modal frequencies of the crystal plate
    Modal
    order
    Natural
    frequency/kHz
    Effective mass in
    normal direction/kg
    PModal
    order
    Natural
    frequency/kHz
    Effective mass in
    normal direction/kg
    P
    12.5853.26288 × 10−61.00000973.4381.13510 × 10−80.00348
    212.4797.97027 × 10−90.002441089.0444.91526 × 10−80.01506
    316.8988.92118 × 10−70.2734111106.3863.74328 × 10−90.00115
    436.7811.54332 × 10−80.0047312114.3361.38521 × 10−100.00004
    542.5463.24468 × 10−70.0994413120.2112.83863 × 10−90.00087
    656.5974.45802 × 10−110.0000114127.1392.82303 × 10−80.00865
    761.5525.64709 × 10−90.0017315145.9522.23781 × 10−100.00007
    869.9821.17592 × 10−70.03604
    下载: 导出CSV 
    | 显示表格

    图6显示了第1、3、5阶模态的平均横向振型的相对幅值(以最大位移为参考值1)。可以看到,第1、3、5阶模态均为横向弯曲模态,与悬臂梁的前3阶振型类似。为分析晶振结构在冲击环境下的损伤边界,在后续的理论分析中将晶片组件简化为全支承悬臂梁结构,即忽略基座构件和导电胶,直接将载荷施加于全支承晶体板的固定端。需要注意的是,石英晶体板与基座实际上是通过两角点处的导电胶连接的,如图1(侧视图)和图2(俯视图)所示。若将结构视为长l = 5.0 mm、宽b = 3.2 mm、厚h = 0.08 mm的悬臂梁,容易求得其前3阶频率分别为2.777、17.405、48.793 kHz,与晶片结构法向占优势的前3阶模态十分接近,相应的振型也具有良好的一致性。可以认为,结构在法向载荷作用下所激起的响应可以近似用悬臂梁模型描述。

    图  6  晶片组件第1、3、5阶模态距固支边相同距离的点的平均横向位移相对幅值
    Figure  6.  Average relative deflection of the points at the same distance from the fixed edge of the 1st, 3rd, and 5th order modes of the structure

    当冲击载荷主导频率的上界低于晶片组件(简化为悬臂梁结构)的一阶频率时,认为梁中的应力主要由梁结构随载荷运动所导致的惯性力产生,结构的损伤边界由冲击载荷的加速度谱控制。将悬臂梁固支端受到的横向加速度载荷近似为恒定加速度作用下梁所受的惯性力(见图7)。单位长度梁结构所受的惯性力F

    图  7  悬臂梁结构受均布载荷作用
    Figure  7.  Cantilever beam structure under uniform load
    F=ρbhah (18)

    式中:ah为原横向载荷的加速度幅值,ρ为梁材料的密度。此时梁上的最大应力响应在固支端发生,且在这种弯曲状态下梁结构最外层纤维的应力是最大的,即

    σ=Mh2I=ρbh2l2ah4I (19)

    式中:M为梁的最大弯矩,I为梁截面关于中性轴的惯性矩。若材料发生损伤的临界应力为σc,则有悬臂梁结构在低频载荷作用下的损伤边界

    ac=4Iρbh2l2σc (20)

    当冲击载荷主导频率的上界高于梁结构的一阶频率时,梁中的最大应力主要由梁受冲击部位相对位移导致的结构最大应力以及应力波在结构中的传播产生的最大应力来决定,因此结构的损伤边界由相对位移谱与伪速度谱中的较小值控制。若设drc线与ac线在伪速度冲击谱中相交于频率f0处,由式(6)可得

    2πf0drc=ac/2πf0 (21)

    结合式(7)、式(8),可求得交点频率f0=k/m2π恰好与结构频率相等。对于受横向载荷的悬臂梁结构,两者交点处对应的圆频率为

    ω1=(β1l)2EIρbhl4 (22)

    式中:β1l是与悬臂梁频率阶数相关的常数(β1l=1.875),E为梁材料的弹性模量。结合式(20)和式(22),可得结构的临界相对位移谱值

    drc=acω21=4l2(β1l)4hEσc (23)

    结构的临界伪速度谱值由式(15)求得,悬臂梁结构受横向载荷的形状系数[16]κ=r/ηη=I/bh,其中r=h/2为梁外层纤维距中性轴的距离,则临界伪速度谱值为

    vpc=2I/(bh)ρhE/ρλσc=2σcIEρbh3 (24)

    当载荷频率大于或等于结构频率时,λ = 1(见附录A)。根据表2中石英晶体的材料参数,当简化为悬臂梁模型进行分析时,其弹性模量取3个主方向的平均值,由式(20)、式(23)、式(24)求得其损伤边界的各临界参数为ac=963gdrc=35.8μmvpc=1.59m/s

    为了验证第2节中简化分析得到的损伤边界对于晶振结构的有效性,如图8所示,通过在晶振底部4个焊盘处施加垂直向上的冲击载荷,利用有限元模型计算晶振结构在冲击环境下的动力学响应,使用ABAQUS/Explicit求解器进行冲击动力学分析,以得到临界冲击载荷及相应的临界冲击响应谱。

    图  8  在晶振焊盘处施加加速度载荷
    Figure  8.  Applying acceleration load to the welding pads

    为了验证求得的损伤边界在各频率载荷作用下的有效性,首先在晶振焊盘处施加与冲击载荷相近的正弦衰减信号(见图9

    图  9  正弦衰减信号
    Figure  9.  Attenuated sinusoidal signal
    as(t)=a0sin(ωpt)exp(ωpt10π)(0t80πωp) (25)

    对在0.5~30.0 kHz频率范围内的几组载荷,逐步增加其幅值,当晶片的最大应力响应达到其临界值时,判定结构发生失效,记录失效发生的时间,并标记从开始加载至结构破坏这一过程中的载荷信号为临界载荷,其冲击响应谱即为该频率载荷下的临界冲击响应谱。

    依次施加不同频率的正弦衰减信号,得到相应的临界载荷,在图10上画出各临界冲击谱谱线。可以看到,其基本与依据悬臂梁模型推导得到的损伤边界相吻合。当载荷频率低于结构频率时,损伤边界受等加速度谱线控制;当载荷频率高于结构频率时,损伤边界受等相对位移谱线与等伪速度谱线中的较小值控制。可以注意到各临界谱谱线所形成的最低点对应的频率f0比损伤边界的交点频率f0稍小,该现象与悬臂梁模型的一阶频率为2.777 kHz而晶片组件的一阶频率为2.585 kHz的观察相吻合。由于有限元模型中晶片组件的支承方式并非全边固支,而是通过与导电胶连接的面区域支承,因此损伤边界与临界冲击谱之间仍存在一些差异。图11为晶振结构受横向冲击作用时的应力云图,晶片组件最大应力出现在与导电胶、基座连接区的附近。

    图  10  损伤边界与临界正弦衰减信号的冲击谱
    Figure  10.  Damage boundary and SRS of critical attenuated sinusoidal signal
    图  11  晶振受横向冲击时的应力云图
    Figure  11.  Stress contour of crystal oscillator under lateral shock

    由于上述仿真分析所施加的冲击载荷均只包含一种频率成分,与实际工程中的冲击载荷存在一定差异,为了验证所得的损伤边界是否适用于实际冲击环境,选用一组实测冲击载荷信号来验证损伤边界的有效性。图12为一组实测冲击信号的加速度时程曲线,在晶振底部的焊盘处施加该冲击载荷,逐步调整载荷幅值,使晶片达到的最大应力响应恰好等于其临界应力,并标记达到最大应力的时间,记该时刻之前加载的冲击信号为临界冲击载荷,得到的临界冲击响应谱如图13所示。可见,其与损伤边界较好地吻合,可以认为该损伤边界在包含多个频率分量的冲击载荷作用下依然可以适用。需要指出的是,晶片结构在整个载荷时程的初期,即7.25 ms时,已达到最大值,因而所得的临界载荷的冲击响应谱并非图12中载荷的冲击响应谱。

    图  12  实测冲击信号
    Figure  12.  Measured shock signal
    图  13  损伤边界临界冲击信号的冲击谱
    Figure  13.  Damage boundary and shock response spectrum of critical shock signal

    借鉴单自由度系统在不同频率下响应特点的分析,根据结构的应力损伤准则,在伪速度冲击响应谱中获得了改进的损伤边界参数,并结合晶振模型验证了其有效性,得到以下结论。

    (1)当冲击载荷主导频率上界低于结构主要频率时,结构的损伤边界由等加速度谱线控制;当冲击载荷主导频率上界高于结构主要频率时,结构的损伤边界由等相对位移谱线和等伪速度谱线中的较小值控制。

    (2)当晶振受到垂直于晶片平面的冲击载荷时,晶片的动力学响应与悬臂梁结构类似,可以用简单的悬臂梁模型近似地分析晶片的损伤破坏机理。

    (3)通过对晶振结构的有限元分析,得到了其在冲击载荷作用下大频率范围的损伤边界,验证了损伤边界各参数选取的有效性。这为以晶振为代表的一些微小高频元器件的力学失效分析以及冲击环境适应性设计提供了参考。

  • [1]
    GOOCH JR W A. An overview of ceramic armor applications [J]. Ceramic Transactions, 2002, 134: 3–21.
    [2]
    HOGG P J. Composites in armor [J]. Science, 2006, 314(5802): 1100–1101. doi: 10.1126/science.1131118
    [3]
    HELVAJIAN H. Microengineering aerospace systems [M]. El Segundo, CA: The Aerospace Press, 1999.
    [4]
    DROLSHAGEN G. Impact effects from small size meteoroids and space debris [J]. Advances in Space Research, 2008, 41(7): 1123–1131. doi: 10.1016/j.asr.2007.09.007
    [5]
    MCBRIDE N, MCDONNELL J A M. Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids [J]. Planetary and Space Science, 1999, 47(8/9): 1005–1013. doi: 10.1016/S0032-0633(99)00023-9
    [6]
    CHRISTIANSEN E L, HYDE J L, BERNHARD R P. Space shuttle debris and meteoroid impacts [J]. Advances in Space Research, 2004, 34(5): 1097–1103. doi: 10.1016/j.asr.2003.12.008
    [7]
    王东方, 肖伟科, 庞宝君. NASA二级轻气炮设备简介 [J]. 实验流体力学, 2014, 28(4): 99–104. doi: 10.11729/syltlx2014pz02

    WANG D F, XIAO W K, PANG B J. A brief introduction on NASA’s two stage light gas guns [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 99–104. doi: 10.11729/syltlx2014pz02
    [8]
    王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 339–345. doi: 10.11858/gywlxb.2014.03.012

    WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339–345. doi: 10.11858/gywlxb.2014.03.012
    [9]
    曹落霞, 胡海波, 陈永涛, 等. 磁驱动飞片加载下纯铁的冲击相变和层裂特性 [J]. 高压物理学报, 2015, 29(4): 248–254. doi: 10.11858/gywlxb.2015.04.002

    CAO L X, HU H B, CHEN Y T, et al. Shock-induced phase transition and spallation in pure iron under magnetically driven flyer plate loading [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 248–254. doi: 10.11858/gywlxb.2015.04.002
    [10]
    牛锦超, 龚自正, 曹燕, 等. 8 km/s激光驱动飞片发射技术实验研究 [J]. 爆炸与冲击, 2014, 34(2): 129–136. doi: 10.11883/1001-1455(2014)02-0129-08

    NIU J C, GONG Z Z, CAO Y, et al. Experimental research on laser-driven flyer plates up to 8 km/s [J]. Explosion and Shock Waves, 2014, 34(2): 129–136. doi: 10.11883/1001-1455(2014)02-0129-08
    [11]
    王志昊, 李勇, 覃文志, 等. 激光驱动飞片飞行特征研究进展 [J]. 含能材料, 2019, 27(3): 255–264. doi: 10.11943/CJEM2018235

    WANG Z H, LI Y, QIN W Z, et al. Research progress in the flight characteristics of laser-driven flyer [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 255–264. doi: 10.11943/CJEM2018235
    [12]
    税敏, 储根柏, 席涛, 等. 神光Ⅲ原型装置激光驱动高速飞片实验研究进展 [J]. 物理学报, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703

    SHUI M, CHU G B, XI T, et al. Experimental progress of laser-driven flyers at the SG-Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703
    [13]
    单连强, 高宇林, 辛建婷, 等. 激光驱动气库靶对铝的准等熵压缩实验研究 [J]. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204

    SHAN L Q, GAO Y L, XIN J T, et al. Laser-driven reservoir target for quasi-isentropic compression in aluminum [J]. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [14]
    SAVAGE M E, ATHERTON B W, BLISS D E, et al. The Z pulsed power driver since refurbishment [R]. Albuquerque: Sandia National Laboratories, 2010.
    [15]
    王桂吉, 赵剑衡, 孙承纬, 等. 磁驱动准等熵加载装置CQ-4的加载能力及主要应用 [J]. 实验力学, 2015, 30(2): 252–262. doi: 10.7520/1001-4888-15-001

    WANG G J, ZHAO J H, SUN C W, et al. On the loading capability and main application of magnetically driven quasi-isentropic compression device CQ-4 [J]. Journal of Experimental Mechanics, 2015, 30(2): 252–262. doi: 10.7520/1001-4888-15-001
    [16]
    LANE J M D, FOILES S M, LIM H, et al. Strain-rate dependence of ramp-wave evolution and strength in tantalum [J]. Physical Review B, 2016, 94(6): 064301. doi: 10.1103/PhysRevB.94.064301
    [17]
    王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展 [J]. 物理学报, 2014, 63(19): 196201–280. doi: 10.7498/aps.63.196201

    WANG G L, GUO S, SHEN Z W, et al. Recent advances in hyper-velocity flyer launch experiments on PTS [J]. Acta Physica Sinica, 2014, 63(19): 196201–280. doi: 10.7498/aps.63.196201
    [18]
    REMINGTON B A, ALLEN P, BRINGA E M, et al. Material dynamics under extreme conditions of pressure and strain rate [J]. Materials Science and Technology, 2006, 22(4): 474–488. doi: 10.1179/174328406X91069
    [19]
    REMINGTON T P, REMINGTON B A, HAHN E N, et al. Deformation and failure in extreme regimes by high-energy pulsed lasers: a review [J]. Materials Science and Engineering: A, 2017, 688: 429–458. doi: 10.1016/j.msea.2017.01.114
    [20]
    ZHANG F C, CUI H W, RUAN X X, et al. The study of electronic structure and optical properties of 2H-SiC [J]. Applied Mechanics and Materials, 2014, 556: 535–538. doi: 10.4028/WWW.SCIENTIFIC.NET/AMM.556-562.535
    [21]
    孙晓波, 高玉波, 徐鹏. 冲击载荷下Al2O3陶瓷的失效与破碎特性 [J]. 高压物理学报, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695

    SUN X B, GAO Y B, XU P. Failure and fracture characteristics of Al2O3 ceramics under impact loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
    [22]
    刘占芳, 冯晓伟, 张凯, 等. 氧化铝陶瓷动态压缩强度的高压和高应变率效应 [J]. 功能材料, 2010, 41(12): 2087–2090.

    LIU Z F, FENG X W, ZHANG K, et al. Effects of high pressure and high strain rate on dynamic compressive strength of alumina [J]. Journal of Functional Materials, 2010, 41(12): 2087–2090.
    [23]
    王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究 [J]. 固体力学学报, 2008, 29(3): 245–249. doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005

    WANG Y G, ZHOU F H. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245–249. doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005
    [24]
    孙占峰, 贺红亮, 李平, 等. AD95陶瓷破坏波问题的实验研究 [J]. 高压物理学报, 2014, 28(2): 129–136. doi: 10.11858/gywlxb.2014.02.001

    SUN Z F, HE H L, LI P, et al. Experimental study on the problem of failure wave in AD95 ceramics [J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129–136. doi: 10.11858/gywlxb.2014.02.001
    [25]
    包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462

    BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
    [26]
    段士伟, 李永池, 李平. 陶瓷材料SHPB实验的改进垫块法 [J]. 实验力学, 2013, 28(5): 607–613. doi: 10.7520/1001-4888-13-025

    DUAN S W, LI Y C, LI P. An improved inserts form in SHPB experiment for ceramic material [J]. Journal of Experimental Mechanics, 2013, 28(5): 607–613. doi: 10.7520/1001-4888-13-025
    [27]
    段士伟, 李永池, 高光发, 等. 陶瓷的平板撞击拉伸损伤演化表征研究 [J]. 弹道学报, 2013, 25(1): 59–61, 76. doi: 10.3969/j.issn.1004-499X.2013.01.012

    DUAN S W, LI Y C, GAO G F, et al. Characterization and tensile evaluation of ceramics under plate-impact conditions [J]. Journal of Ballistics, 2013, 25(1): 59–61, 76. doi: 10.3969/j.issn.1004-499X.2013.01.012
    [28]
    任文科, 高光发, 朴春华, 等. 碳化硼陶瓷复合靶板抗侵彻性能实验研究 [J]. 高压物理学报, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657

    REN W K, GAO G F, PIAO C H, et al. Experimental study of ballistic performance for boron carbide ceramic composite targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
    [29]
    张先锋, 李永池. 约束及增韧对氧化铝陶瓷抗射流侵彻性能的影响 [J]. 爆炸与冲击, 2009, 29(2): 149–154. doi: 10.11883/1001-1455(2009)02-0149-06

    ZHANG X F, LI Y C. Constraining and toughening effects alumina ceramic targets on anti-penetration properties of to shaped charge jets [J]. Explosion and Shock Waves, 2009, 29(2): 149–154. doi: 10.11883/1001-1455(2009)02-0149-06
    [30]
    李永池, 王道荣, 姚磊, 等. 陶瓷材料的抗侵彻机理和陶瓷锥演化的数值模拟 [J]. 弹道学报, 2004, 16(4): 12–17. doi: 10.3969/j.issn.1004-499X.2004.04.003

    LI Y C, WANG D R, YAO L, et al. A numerical simulation on anti-penetration mechanism and ceramic cone evolution of ceramic targets [J]. Journal of Ballistics, 2004, 16(4): 12–17. doi: 10.3969/j.issn.1004-499X.2004.04.003
    [31]
    谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. doi: 10.3969/j.issn.1000-1093.2016.04.008

    TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. doi: 10.3969/j.issn.1000-1093.2016.04.008
    [32]
    王长利, 周刚, 马坤, 等. 爆炸成型弹丸对陶瓷材料的侵彻实验研究 [J]. 兵器材料科学与工程, 2017, 40(3): 94–98. doi: 10.14024/j.cnki.1004-244x.20170427.007

    WANG C L, ZHOU G, MA K, et al. Experimental study of EFP penetrating ceramic armor [J]. Ordnance Material Science and Engineering, 2017, 40(3): 94–98. doi: 10.14024/j.cnki.1004-244x.20170427.007
    [33]
    SUBHASH G, MAITI S, GEUBELLE P H, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics [J]. Journal of the American Ceramic Society, 2008, 91(9): 2777–2791. doi: 10.1111/j.1551-2916.2008.02624.x
    [34]
    NORMANDIA M J. Impact response and analysis of several silicon carbides [J]. International Journal of Applied Ceramic Technology, 2004, 1(3): 226–234. doi: 10.1111/j.1744-7402.2004.tb00174.x
    [35]
    LI T, YANG Y, YU X, et al. Micro-structure response and fracture mechanisms of C/SiC composites subjected to low-velocity ballistic penetration [J]. Ceramics International, 2017, 43(9): 6910–6918. doi: 10.1016/j.ceramint.2017.02.113
    [36]
    王鹏. 碳化硅陶瓷抗弹性能研究[D]. 南京: 南京理工大学, 2012.

    WANG P. Research of capacity for penetrating resistance of SiC ceramic [D]. Nanjing: Nanjing University of Science andTechnology, 2012.
    [37]
    ZINSZNER J L, FORQUIN P, ROSSIQUET G. Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact [J]. International Journal of Impact Engineering, 2015, 76: 9–19. doi: 10.1016/j.ijimpeng.2014.07.007
    [38]
    FORQUIN P, ROSSIQUET G, ZINSZNER J L, et al. Microstructure influence on the fragmentation properties of dense silicon carbides under impact [J]. Mechanics of Materials, 2018, 123: 59–76. doi: 10.1016/J.MECHMAT.2018.03.007
    [39]
    GAMA B A, LOPATNIKOV S L, GILLESPIE JR J W. Hopkinson bar experimental technique: a critical review [J]. Applied Mechanics Reviews, 2004, 57(4): 223–250. doi: 10.1115/1.1704626
    [40]
    FOLLANSBEE P S. The hopkinson bar [M]//BOYER H E, GALL T L. Metals Handbook. Metals Park: American Society for Metals, 1985: 198−217.
    [41]
    HUH H, KANG W J, HAN S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals [J]. Experimental Mechanics, 2002, 42(1): 8–17. doi: 10.1007/BF02411046
    [42]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. doi: 10.11883/1001-1455(2014)06-0641-17

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. doi: 10.11883/1001-1455(2014)06-0641-17
    [43]
    RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. doi: 10.1111/j.1151-2916.1994.tb06987.x
    [44]
    SHIH C J, MEYERS M A, NESTERENKO V F, et al. Damage evolution in dynamic deformation of silicon carbide [J]. Acta Materialia, 2000, 48(9): 2399–2420. doi: 10.1016/S1359-6454(99)00409-7
    [45]
    SARVA S, NEMAT-NASSER S. Dynamic compressive strength of silicon carbide under uniaxial compression [J]. Materials Science and Engineering: A, 2001, 317(1/2): 140–144. doi: 10.1016/S0921-5093(01)01172-8
    [46]
    BOURNE N, MILLETT J, PICKUP I. Delayed failure in shocked silicon carbide [J]. Journal of Applied Physics, 1997, 81(9): 6019–6023. doi: 10.1063/1.364450
    [47]
    PICKUP I M, BARKER A K. Damage kinetics in silicon carbide [J]. AIP Conference Proceedings, 1998, 429(1): 513–516. doi: 10.1063/1.55698
    [48]
    WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression [J]. Acta Materialia, 2004, 52(2): 355–367. doi: 10.1016/j.actamat.2003.09.036
    [49]
    靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014.

    JIN X Q. Dynamic fragmentation processes of ceramic cylinders under quasi-static and dynamic compression [D]. Ningbo: Ningbo University, 2014
    [50]
    孙红婵, 胡冰, 李晨辉, 等. 钨丝掺杂碳化硅的高速冲击力学性能研究 [J]. 中国陶瓷, 2014, 50(12): 49–51. doi: 10.16521/j.cnki.issn.1001-9642.2014.12.007

    SUN H C, HU B, LI C H, et al. The research on high speed impact mechanical properties of W mix SiC [J]. China Ceramics, 2014, 50(12): 49–51. doi: 10.16521/j.cnki.issn.1001-9642.2014.12.007
    [51]
    高远飞. 氧化铝、碳化硅及Al2O3/SiC复相陶瓷高应变率形变研究[D]. 北京: 中国地质大学(北京), 2014.

    GAO Y F. Study on high strain rate deformation of alumina, silicon carbide ceramics and Al2O3/SiC nanocomposites [D]. Beijing: China University of Geosciences, 2014.
    [52]
    WANG Z Y, LI P F, SONG W D. Inelastic deformation micromechanism and modified fragmentation model for silicon carbide under dynamic compression [J]. Materials & Design, 2018, 157: 244–250. doi: 10.1016/j.matdes.2018.07.032
    [53]
    LI X, ZHANG K, KONIETZKY H, et al. Experimental study on the dynamic mechanical behaviors of silicon carbide ceramic after thermal shock [J]. Nuclear Materials and Energy, 2020, 24: 100774. doi: 10.1016/j.nme.2020.100774
    [54]
    AHRENS T J, GREGSON JR V G. Shock compression of crustal rocks: data for quartz, calcite, and plagioclase rocks [J]. Journal of Geophysical Research, 1964, 69(22): 4839–4874. doi: 10.1029/JZ069i022p04839
    [55]
    KINSLOW R. High-velocity impact phenomena [M]. New York: Academic Press, 1970.
    [56]
    GUST W H, ROYCE E B. Axial yield strengths and two successive phase transition stresses for crystalline silicon [J]. Journal of Applied Physics, 1971, 42(5): 1897–1905. doi: 10.1063/1.1660465
    [57]
    GUST W H, HOLT A C, ROYCE E B. Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds [J]. Journal of Applied Physics, 1973, 44(2): 550–560. doi: 10.1063/1.1662224
    [58]
    KIPP M E, GRADY D E. Shock compression and release in high-strength ceramics [R]. Albuquerque: Sandia National Laboratories, 1989.
    [59]
    GRADY D E. Shock-wave properties of brittle solids [J]. AIP Conference Proceedings, 1996, 370(1): 9–20. doi: 10.1063/1.50579
    [60]
    FENG R, RAISER G F, GUPTA Y M. Shock response of polycrystalline silicon carbide undergoing inelastic deformation [J]. Journal of Applied Physics, 1996, 79(3): 1378–1387. doi: 10.1063/1.361036
    [61]
    FENG R, RAISER G F, GUPTA Y M. Material strength and inelastic deformation of silicon carbide under shock wave compression [J]. Journal of Applied Physics, 1998, 83(1): 79–86. doi: 10.1063/1.366704
    [62]
    YUAN G, FENG R, GUPTA Y M. Compression and shear wave measurements to characterize the shocked state in silicon carbide [J]. Journal of Applied Physics, 2001, 89(10): 5372–5380. doi: 10.1063/1.1365438
    [63]
    SEKINE T, KOBAYASHI T. Shock compression of 6H polytype SiC to 160 GPa [J]. Physical Review B, 1997, 55(13): 8034–8037. doi: 10.1103/PhysRevB.55.8034
    [64]
    ZHU Y Q, SEKINE T, KOBAYASHI T, et al. Shock-induced phase transitions among SiC polytypes [J]. Journal of Materials Science, 1998, 33(24): 5883–5890. doi: 10.1023/A:1004482922441
    [65]
    VOGLER T J, REINHART W D, CHHABILDAS L C, et al. Hugoniot and strength behavior of silicon carbide [J]. Journal of Applied Physics, 2006, 99(2): 023512. doi: 10.1063/1.2159084
    [66]
    PARIS V, FRAGE N, DARIEL M P, et al. Divergent impact study of the compressive failure threshold in SiC and B4C [J]. International Journal of Impact Engineering, 2011, 38(4): 228–237. doi: 10.1016/j.ijimpeng.2010.10.027
    [67]
    GAUTAM P C, GUPTA R, SHARMA A C, et al. Determination of Hugoniot elastic limit (HEL) and equation of state (EOS) of ceramic materials in the pressure region 20 GPa to 100 GPa [J]. Procedia Engineering, 2017, 173: 198–205. doi: 10.1016/j.proeng.2016.12.058
    [68]
    MILLETT J C F, BOURNE N K, DANDEKAR D P. Delayed failure in a shock-loaded silicon carbide [J]. Journal of Applied Physics, 2005, 97(11): 113513. doi: 10.1063/1.1923161
    [69]
    WINKLER W D, STILP A J. Spallation behavior of TiB2, SiC, and B4C under planar impact tensile stresses [M]//SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter–1991. Amsterdam: Elsevier, 1992: 475–478.
    [70]
    BARTKOWSKI P, DANDEKAR D P. Spall strengths of sintered and hot pressed silicon carbide [J]. AIP Conference Proceedings, 1996, 370(1): 535–538. doi: 10.1063/1.50654
    [71]
    DANDEKAR D P, BARTKOWSKI P T. Tensile strengths of silicon carbide (SiC) under shock loading [R]. Army Research Laboratories, 2001.
    [72]
    DANDEKAR D P. Spall strength of silicon carbide under normal and simultaneous compression-shear shock wave loading [J]. International Journal of Applied Ceramic Technology, 2004, 1(3): 261–268. doi: 10.1111/j.1744-7402.2004.tb00178.x
    [73]
    PARIS V, FRAGE N, DARIEL M P, et al. The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering [J]. International Journal of Impact Engineering, 2010, 37(11): 1092–1099. doi: 10.1016/j.ijimpeng.2010.06.008
    [74]
    SAVINYKH A S, KANEL G I, RAZORENOV S V, et al. Evolution of shock waves in SiC ceramic [J]. Technical Physics, 2013, 58(7): 973–977. doi: 10.1134/S1063784213070207
    [75]
    GARKUSHIN G V, RAZORENOV S V, RUMYANTSEV V I, et al. Dynamic strength of reaction-sintered silicon carbide ceramics [J]. Mechanics of Solids, 2014, 49(6): 616–622. doi: 10.3103/S0025654414060028
    [76]
    PAISLEY D L, LUO S N, GREENFIELD S R, et al. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications [J]. Review of Scientific Instruments, 2008, 79(2): 023902. doi: 10.1063/1.2839399
    [77]
    ZHAO S T, KAD B, REMINGTON B A, et al. Directional amorphization of boron carbide subjected to laser shock compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12088–12093. doi: 10.1073/pnas.1604613113
    [78]
    ZHAO S, HAHN E N, KAD B, et al. Amorphization and nanocrystallization of silicon under shock compression [J]. Acta Materialia, 2016, 103: 519–533. doi: 10.1016/j.actamat.2015.09.022
    [79]
    ZHAO S T, KAD B, WEHRENBERG C E, et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9791–9796. doi: 10.1073/pnas.1708853114
    [80]
    ASHITKOV S I, AGRANAT M B, KANEL’G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Letters, 2010, 92(8): 516–520. doi: 10.1134/S0021364010200051
    [81]
    WHITLEY V, MCGRANE S, BOLME C, et al. The elastic-plastic response of metal films subjected to ultrafast laser-generated shocks [C]//Proceedings of the 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Washington DC, USA: American Physical Society, 2011.
    [82]
    ZHAO S, FLANAGAN R, HAHN E N, et al. Shock-induced amorphization in silicon carbide [J]. Acta Materialia, 2018, 158: 206–213. doi: 10.1016/j.actamat.2018.07.047
    [83]
    TRACY S J, SMITH R F, WICKS J K, et al. In situ: observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction [J]. Physical Review B, 2019, 99(21): 214106. doi: 10.1103/PhysRevB.99.214106
    [84]
    GRADY D E. Shock-wave strength properties of boron carbide and silicon carbide [J]. Journal de Physique IV, 1994, 4(C8): C8-385–C8-391. doi: 10.1051/jp4:1994859
    [85]
    SMITH R F, MINICH R W, RUDD R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon [J]. Physical Review B, 2012, 86(24): 245204. doi: 10.1103/PhysRevB.86.245204
    [86]
    SMITH R F, EGGERT J H, RUDD R E, et al. High strain-rate plastic flow in Al and Fe [J]. Journal of Applied Physics, 2011, 110(12): 123515. doi: 10.1063/1.3670001
    [87]
    BEHNER T, ORPHAL D L, HOHLER V, et al. Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s [J]. International Journal of Impact Engineering, 2006, 33(1): 68–79. doi: 10.1016/j.ijimpeng.2006.09.082
    [88]
    ANDERSON JR C E, BEHNER T, HOLMQUIST T J, et al. Penetration response of silicon carbide as a function of impact velocity [J]. International Journal of Impact Engineering, 2011, 38(11): 892–899. doi: 10.1016/j.ijimpeng.2011.06.002
    [89]
    COX B N, GAO H J, GROSS D, et al. Modern topics and challenges in dynamic fracture [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 565–596. doi: 10.1016/j.jmps.2004.09.002
    [90]
    FAHRENTHOLD E P. A continuum damage model for fracture of brittle solids under dynamic loading [J]. Journal of Applied Mechanics, 1991, 58(4): 904–909. doi: 10.1115/1.2897704
    [91]
    RAJENDRAN A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact Engineering, 1994, 15(6): 749–768. doi: 10.1016/0734-743X(94)90033-H
    [92]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. doi: 10.1063/1.46199
    [93]
    SIMHA C H M, BLESS S J, BEDFORD A. Computational modeling of the penetration response of a high-purity ceramic [J]. International Journal of Impact Engineering, 2002, 27(1): 65–86. doi: 10.1016/S0734-743X(01)00036-7
    [94]
    RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2627–2646. doi: 10.1016/0020-7683(94)00286-6
    [95]
    ESPINOSA H D. On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation [J]. International Journal of Solids and Structures, 1995, 32(21): 3105–3128. doi: 10.1016/0020-7683(94)00300-L
    [96]
    ESPINOSA H D, XU Y P, BRAR N S. Micromechanics of failure waves in glass: Ⅱ modeling [J]. Journal of the American Ceramic Society, 1997, 80(8): 2074–2085. doi: 10.1111/J.1151-2916.1997.TB03091.X
    [97]
    STEINBERG D J. Computer studies of the dynamic strength of ceramics [M]//TAKAYAMA K. Shock Waves. Berlin: Springer, 1992: 415–422.
    [98]
    张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232. doi: 10.3321/j.issn:1001-1455.2004.03.006

    ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232. doi: 10.3321/j.issn:1001-1455.2004.03.006
    [99]
    RAJENDRAN A M, GROVE D J. Modeling the shock response of silicon carbide, boron carbide and titanium diboride [J]. International Journal of Impact Engineering, 1996, 18(6): 611–631. doi: 10.1016/0734-743X(96)89122-6
    [100]
    任会兰, 宁建国. 强冲击载荷下氧化铝陶瓷的力学特性及本构模型 [J]. 北京理工大学学报, 2007, 27(9): 761–764, 796. doi: 10.3969/j.issn.1001-0645.2007.09.003

    REN H L, NING J G. Mechanical characteristics and constitutive model of alumina ceramic subjected to shock loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(9): 761–764, 796. doi: 10.3969/j.issn.1001-0645.2007.09.003
    [101]
    HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. doi: 10.1063/1.1468903
    [102]
    HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact [J]. Journal of Applied Physics, 2005, 97(9): 093502. doi: 10.1063/1.1881798
    [103]
    唐瑞涛, 徐柳云, 文鹤鸣, 等. 陶瓷材料宏观动态新本构模型 [J]. 高压物理学报, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863

    TANG R T, XU L Y, WEN H M, et al. A macroscopic dynamic constitutive model for ceramic materials [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863
    [104]
    ANDERSON JR C E. A review of computational ceramic armor modeling [M]//PROKURAT L, WERESZCZAK A, LARA-CURZIO E. Advances in ceramic armor Ⅱ: ceramic engineering and science proceedings. Hoboken: John Wiley & Sons Inc., 2006. .
    [105]
    WALLEY S M. Historical review of high strain rate and shock properties of ceramics relevant to their application in armour [J]. Advances in Applied Ceramics, 2010, 109(8): 446–466. doi: 10.1179/174367609X422180
    [106]
    ZHU J B. Strength of polycrystalline ceramics under shock compression [D]. Nebraska: The University of Nebraska-Lincoln, 2011.
    [107]
    LEVY S, MOLINARI J F. Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(1): 12–26. doi: 10.1016/j.jmps.2009.09.002
    [108]
    易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [109]
    易荣成, 王坚茹, 印立魁, 等. 陶瓷易碎弹对铝板的冲击特性研究 [J]. 振动与冲击, 2017, 36(6): 163–167. doi: 10.13465/j.cnki.jvs.2017.06.025

    YI R C, WANG J R, YIN L K, et al. Characteristics of ceramic fragile projectiles impacting against aluminum plates [J]. Journal of Vibration and Shock, 2017, 36(6): 163–167. doi: 10.13465/j.cnki.jvs.2017.06.025
    [110]
    CHAKRABORTY S, ISLAM M R I, SHAW A, et al. A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures [J]. Composite Structures, 2017, 164: 263–276. doi: 10.1016/j.compstruct.2016.12.064
    [111]
    COOPER I Z, RUBIN M B. Modeling damage in silicon carbide due to an impact stress below the HEL [J]. International Journal of Impact Engineering, 2014, 65: 174–184. doi: 10.1016/j.ijimpeng.2013.11.007
    [112]
    MERZHIEVSKII L A. Deformation models under intense dynamic loading (review) [J]. Combustion, Explosion, and Shock Waves, 2015, 51(2): 269–283. doi: 10.1134/S0010508215020100
    [113]
    CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. doi: 10.1016/j.ijimpeng.2015.05.011
    [114]
    TANG R T, WEN H M. Predicting the perforation of ceramic-faced light armors subjected to projectile impact [J]. International Journal of Impact Engineering, 2017, 102: 55–61. doi: 10.1016/j.ijimpeng.2016.11.008
    [115]
    ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression [J]. Journal of Engineering Materials and Technology, 2019, 141(1): 011007. doi: 10.1115/1.4040591
    [116]
    KADAU K, GERMANN T C, LOMDAHL P S. Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L [J]. International Journal of Modern Physics C, 2006, 17(12): 1755–1761. doi: 10.1142/S0129183106010182
    [117]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
    [118]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [119]
    VASHISHTA P, KALIA R K, NAKANO A. Multimillion atom simulations of dynamics of wing cracks and nanoscale damage in glass, and hypervelocity impact damage in ceramics [J]. Computer Physics Communications, 2007, 177(1/2): 202–205. doi: 10.1016/j.cpc.2007.02.097
    [120]
    TERSOFF J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566–5568. doi: 10.1103/PhysRevB.39.5566
    [121]
    TERSOFF J. Carbon defects and defect reactions in silicon [J]. Physical Review Letters, 1990, 64(15): 1757–1760. doi: 10.1103/PhysRevLett.64.1757
    [122]
    TERSOFF J. Chemical order in amorphous silicon carbide [J]. Physical Review B, 1994, 49(23): 16349–16352. doi: 10.1103/PhysRevB.49.16349
    [123]
    ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211. doi: 10.1103/PHYSREVB.71.035211
    [124]
    VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide [J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
    [125]
    LI W H, YAO X H, ZHANG X Q. Planar impacts on nanocrystalline SiC: a comparison of different potentials [J]. Journal of Materials Science, 2018, 53(9): 6637–6651. doi: 10.1007/s10853-018-1985-1
    [126]
    BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AlN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. doi: 10.1016/j.jmps.2007.11.004
    [127]
    BRANICIO P S, NAKANO A, KALIA R K, et al. Shock loading on AlN ceramics: a large scale molecular dynamics study [J]. International Journal of Plasticity, 2013, 51: 122–131. doi: 10.1016/j.ijplas.2013.06.002
    [128]
    BRANICIO P S, KALIA R K, NAKANO A, et al. Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic [J]. Physical Review Letters, 2006, 96(6): 065502. doi: 10.1103/PhysRevLett.96.065502
    [129]
    ZHANG C, KALIA R K, NAKANO A, et al. Hypervelocity impact induced deformation modes in α-alumina [J]. Applied Physics Letters, 2007, 91(7): 071906. doi: 10.1063/1.2753092
    [130]
    ZHANG C, KALIA R K, NAKANO A, et al. Fracture initiation mechanisms in α-alumina under hypervelocity impact [J]. Applied Physics Letters, 2007, 91(12): 121911. doi: 10.1063/1.2786865
    [131]
    ZHANG C, KALIA R K, NAKANO A, et al. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading [J]. Journal of Applied Physics, 2008, 103(8): 083508. doi: 10.1063/1.2891797
    [132]
    KUKSIN A Y, YANILKIN A V. Formation of twins in sapphire under shock wave loading: atomistic simulations [J]. Journal of Applied Physics, 2012, 111(3): 033513. doi: 10.1063/1.3681321
    [133]
    BRANICIO P S, KALIA R K, NAKANO A, et al. Nanoductility induced brittle fracture in shocked high performance ceramics [J]. Applied Physics Letters, 2010, 97(11): 111903. doi: 10.1063/1.3478003
    [134]
    ZHANG J Y, BRANICIO P S. Molecular dynamics simulations of plane shock loading in SiC [J]. Procedia Engineering, 2014, 75: 150–153. doi: 10.1016/j.proeng.2013.11.032
    [135]
    BRANICIO P S, ZHANG J Y, RINO J P, et al. Plane shock loading on mono-and nano-crystalline silicon carbide [J]. Applied Physics Letters, 2018, 112(11): 111909. doi: 10.1063/1.5025583
    [136]
    BRANICIO P S, ZHANG J Y, RINO J P, et al. Shock-induced microstructural response of mono-and nanocrystalline SiC ceramics [J]. Journal of Applied Physics, 2018, 123(14): 145902. doi: 10.1063/1.5023915
    [137]
    LI W H, YAO X H, BRANICIO P S, et al. Shock-induced spall in single and nanocrystalline SiC [J]. Acta Materialia, 2017, 140: 274–289. doi: 10.1016/j.actamat.2017.08.036
    [138]
    LEE W H, YAO X H. First principle investigation of phase transition and thermodynamic properties of SiC [J]. Computational Materials Science, 2015, 106: 76–82. doi: 10.1016/j.commatsci.2015.04.044
    [139]
    MAKEEV M A, SRIVASTAVA D. Hypersonic velocity impact on α-SiC target: a diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909. doi: 10.1063/1.2894188
    [140]
    MAKEEV M A, SRIVASTAVA D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/α-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451–2455. doi: 10.1016/j.compscitech.2008.04.040
    [141]
    MAKEEV M A, SUNDARESH S, SRIVASTAVA D. Shock-wave propagation through pristine α-SiC and carbon-nanotube-reinforced α-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311. doi: 10.1063/1.3152587
    [142]
    LI W H, HAHN E N, YAO X H, et al. Shock induced damage and fracture in SiC at elevated temperature and high strain rate [J]. Acta Materialia, 2019, 167: 51–70. doi: 10.1016/j.actamat.2018.12.035
    [143]
    LI W H, HAHN E N, YAO X H, et al. On the grain size dependence of shock responses in nanocrystalline SiC ceramics at high strain rates [J]. Acta Materialia, 2020, 200: 632–651. doi: 10.1016/j.actamat.2020.09.044
    [144]
    LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression [J]. International Journal of Plasticity, 2021, 138: 102923. doi: 10.1016/j.ijplas.2020.102923
    [145]
    DAVIAU K, LEE K K M. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell [J]. Physical Review B, 2017, 95(13): 134108. doi: 10.1103/PHYSREVB.95.134108
    [146]
    李旺辉. 极端条件下碳化硅的变形、损伤与破坏研究[D]. 广州: 华南理工大学, 2018.

    LI W H. Investigation on the deformation, damage and fracture of SiC under extreme conditions [D]. Guangzhou: South China University of Technology, 2018.
    [147]
    PIZZAGALLI L. Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide [J]. Acta Materialia, 2014, 78: 236–244. doi: 10.1016/j.actamat.2014.06.053
    [148]
    LU Y P, HE D W, ZHU J, et al. First-principles study of pressure-induced phase transition in silicon carbide [J]. Physica B: Condensed Matter, 2008, 403(19/20): 3543–3546. doi: 10.1016/j.physb.2008.05.028
    [149]
    PERDEW J P, WANG Y. Erratum: accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 2018, 98(7): 079904. doi: 10.1103/PhysRevB.98.079904
    [150]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1997, 78(7): 1396. doi: 10.1103/PhysRevLett.78.1396
    [151]
    PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [152]
    GORAI S, BHATTACHARYA C. Shock induced phase transition in SiC polytypes [J]. Journal of Applied Physics, 2019, 125(18): 185903. doi: 10.1063/1.5090808
    [153]
    CATTI M. Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure [J]. Physical Review Letters, 2001, 87(3): 035504. doi: 10.1103/PhysRevLett.87.035504
    [154]
    LU G, KAXIRAS E. An overview of multiscale simulations of materials [EB/OL]. (2004−01−07)[2021−04−25]. https://arxiv.org/abs/cond-mat/0401073.
    [155]
    TADMOR E B, ORTIZ M, PHILLIPS R. Quasicontinuum analysis of defects in solids [J]. Philosophical Magazine A, 1996, 73(6): 1529–1563. doi: 10.1080/01418619608243000
    [156]
    LI J, YIP S. Atomistic measures of materials strength [J]. CMES-Computer Modeling in Engineering & Sciences, 2002, 3(2): 219–228. doi: 10.3970/cmes.2002.003.219
    [157]
    CAI W, DE KONING M, BULATOV V V, et al. Minimizing boundary reflections in coupled-domain simulations [J]. Physical Review Letters, 2000, 85(15): 3213–3216. doi: 10.1103/PhysRevLett.85.3213
    [158]
    CAI W, BULATOV V V, JUSTO J F, et al. Intrinsic mobility of a dissociated dislocation in silicon [J]. Physical Review Letters, 2000, 84(15): 3346–3349. doi: 10.1103/PhysRevLett.84.3346
    [159]
    DONG X Y. Materials-genome-based multiscale modeling of ceramics and laser-assisted machining [D]. Silafaye: Purdue University, 2017.
    [160]
    YAMASHITA H, HART R, SHARMA T, et al. A review of multiscale methods and their applications in modeling and simulation of engineering problems [J]. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 2016, 3(3): 42–47.
    [161]
    GUR S, SADAT M R, FRANTZISKONIS G N, et al. The effect of grain-size on fracture of polycrystalline silicon carbide: a multiscale analysis using a molecular dynamics-peridynamics framework [J]. Computational Materials Science, 2019, 159: 341–348. doi: 10.1016/j.commatsci.2018.12.038
    [162]
    HANSEN N. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801–806. doi: 10.1016/j.scriptamat.2004.06.002
    [163]
    SZLUFARSKA I, RAMESH K T, WARNER D H. Simulating mechanical behavior of ceramics under extreme conditions [J]. Annual Review of Materials Research, 2013, 43: 131–156. doi: 10.1146/annurev-matsci-071312-121714
    [164]
    FORQUIN P. Brittle materials at high-loading rates: an open area of research [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160436. doi: 10.1098/RSTA.2016.0436
    [165]
    BALINT D S, DESHPANDE V S, NEEDLEMAN A, et al. Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals [J]. International Journal of Plasticity, 2008, 24(12): 2149–2172. doi: 10.1016/j.ijplas.2007.08.005
    [166]
    PANDE C S, COOPER K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Progress in Materials Science, 2009, 54(6): 689–706. doi: 10.1016/j.pmatsci.2009.03.008
    [167]
    ARMSTRONG R W. 60 years of Hall-Petch: past to present nano-scale connections [J]. Materials Transactions, 2014, 55(1): 2–12. doi: 10.2320/matertrans.MA201302
    [168]
    HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
    [169]
    PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
    [170]
    LEE W H, YAO X H, JIAN W R, et al. High-velocity shock compression of SiC via molecular dynamics simulation [J]. Computational Materials Science, 2015, 98: 297–303. doi: 10.1016/j.commatsci.2014.11.029
    [171]
    YUAN W, PANIGRAHI S K, SU J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scripta Materialia, 2011, 65(11): 994–997. doi: 10.1016/j.scriptamat.2011.08.028
    [172]
    CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect–a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. doi: 10.1080/09506608.2016.1191808
    [173]
    AIFANTIS K E, KONSTANTINIDIS A A. Hall-Petch revisited at the nanoscale [J]. Materials Science and Engineering: B, 2009, 163(3): 139–144. doi: 10.1016/j.mseb.2009.05.010
    [174]
    HAHN E N, MEYERS M A. Grain-size dependent mechanical behavior of nanocrystalline metals [J]. Materials Science and Engineering: A, 2015, 646: 101–134. doi: 10.1016/j.msea.2015.07.075
    [175]
    CARLTON C E, FERREIRA P J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J]. Acta Materialia, 2007, 55(11): 3749–3756. doi: 10.1016/j.actamat.2007.02.021
    [176]
    BARAI P, WENG G J. Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding [J]. International Journal of Plasticity, 2009, 25(12): 2410–2434. doi: 10.1016/j.ijplas.2009.04.001
    [177]
    QUEK S S, CHOOI Z H, WU Z X, et al. The inverse hall-petch relation in nanocrystalline metals: a discrete dislocation dynamics analysis [J]. Journal of the Mechanics and Physics of Solids, 2016, 88: 252–266. doi: 10.1016/j.jmps.2015.12.012
    [178]
    TRELEWICZ J R, SCHUH C A. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation [J]. Acta Materialia, 2007, 55(17): 5948–5958. doi: 10.1016/j.actamat.2007.07.020
    [179]
    TRELEWICZ J R, SCHUH C A. The Hall-Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications [J]. Applied Physics Letters, 2008, 93(17): 171916. doi: 10.1063/1.3000655
    [180]
    ZHOU K, LIU B, YAO Y J, et al. Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics [J]. Materials Science and Engineering: A, 2014, 615: 92–97. doi: 10.1016/j.msea.2014.07.066
    [181]
    FREY M H, PAYNE D A. Grain-size effect on structure and phase transformations for barium titanate [J]. Physical Review B, 1996, 54(5): 3158–3168. doi: 10.1103/PhysRevB.54.3158
    [182]
    EHRE D, CHAIM R. Abnormal Hall-Petch behavior in nanocrystalline MgO ceramic [J]. Journal of Materials Science, 2008, 43(18): 6139–6143. doi: 10.1007/s10853-008-2936-z
    [183]
    SOKOL M, HALABI M, MORDEKOVITZ Y, et al. An inverse Hall-Petch relation in nanocrystalline MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS) [J]. Scripta Materialia, 2017, 139: 159–161. doi: 10.1016/j.scriptamat.2017.06.049
    [184]
    WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al. An extended hardness limit in bulk nanoceramics [J]. Acta Materialia, 2014, 69: 9–16. doi: 10.1016/j.actamat.2014.01.030
    [185]
    MUCHE D N F, DRAZIN J W, MARDINLY J, et al. Colossal grain boundary strengthening in ultrafine nanocrystalline oxides [J]. Materials Letters, 2017, 186: 298–300. doi: 10.1016/j.matlet.2016.10.035
    [186]
    RYOU H, DRAZIN J W, WAHL K J, et al. Below the hall-petch limit in nanocrystalline ceramics [J]. ACS Nano, 2018, 12(4): 3083–3094. doi: 10.1021/acsnano.7b07380
    [187]
    BRINGA E M, CARO A, WANG Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
    [188]
    VO N Q, AVERBACK R S, BELLON P, et al. Yield strength in nanocrystalline Cu during high strain rate deformation [J]. Scripta Materialia, 2009, 61(1): 76–79. doi: 10.1016/j.scriptamat.2009.03.003
    [189]
    WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [190]
    WILKERSON J W. On the micromechanics of void dynamics at extreme rates [J]. International Journal of Plasticity, 2017, 95: 21–42. doi: 10.1016/j.ijplas.2017.03.008
    [191]
    SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
    [192]
    LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films [J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
    [193]
    SZLUFARSKA I, NAKANO A, VASHISHTA P. A crossover in the mechanical response of nanocrystalline ceramics [J]. Science, 2005, 309(5736): 911–914. doi: 10.1126/science.1114411
    [194]
    MO Y F, SZLUFARSKA I. Simultaneous enhancement of toughness, ductility, and strength of nanocrystalline ceramics at high strain-rates [J]. Applied Physics Letters, 2007, 90(18): 181926. doi: 10.1063/1.2736652
    [195]
    SHINODA Y, NAGANO T, GU H, et al. Superplasticity of silicon carbide [J]. Journal of the American Ceramic Society, 1999, 82(10): 2916–2918. doi: 10.1111/J.1151-2916.1999.TB02178.X
    [196]
    WANANURUKSAWONG R, SHINODA Y, AKATSU T, et al. High-strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression [J]. Scripta Materialia, 2015, 103: 22–25. doi: 10.1016/j.scriptamat.2015.02.028
    [197]
    ZHANG J Y, SHA Z D, BRANICIO P S, et al. Superplastic nanocrystalline ceramics at room temperature and high strain rates [J]. Scripta Materialia, 2013, 69(7): 525–528. doi: 10.1016/j.scriptamat.2013.06.017
    [198]
    NANDI P K, ANNAMAREDDY V A, EAPEN J. Role of CSL boundaries on displacement cascades in β-SiC [J]. MRS Online Proceedings Library, 2013, 1514: 43–48. doi: 10.1557/opl.2013.61
    [199]
    SUN L G, HE X Q, LU J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts [J]. NJP Computational Materials, 2018, 4(1): 6. doi: 10.1038/s41524-018-0062-2
    [200]
    LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. doi: 10.1126/science.1159610
    [201]
    LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.1092905
    [202]
    LI X Y, YIN S, OH S H, et al. Hardening and toughening mechanisms in nanotwinned ceramics [J]. Scripta Materialia, 2017, 133: 105–112. doi: 10.1016/j.scriptamat.2017.02.003
    [203]
    AN Q, GODDARD Ⅲ W A, XIE K Y, et al. Superstrength through nanotwinning [J]. Nano Letters, 2016, 16(12): 7573–7579. doi: 10.1021/acs.nanolett.6b03414
    [204]
    AN Q, GODDARD Ⅲ W A. Nanotwins soften boron-rich boron carbide (B13C2) [J]. Applied Physics Letters, 2017, 110(11): 111902. doi: 10.1063/1.4978644
    [205]
    KUNKA C, AN Q, RUDAWSKI N, et al. Nanotwinning and amorphization of boron suboxide [J]. Acta Materialia, 2018, 147: 195–202. doi: 10.1016/j.actamat.2018.01.048
    [206]
    KUNKA C, YANG X K, AN Q, et al. Icosahedral superstrength at the nanoscale [J]. Physical Review Materials, 2018, 2(6): 063606. doi: 10.1103/PhysRevMaterials.2.063606
    [207]
    LI G D, AYDEMIR U, MOROZOV S I, et al. Superstrengthening Bi2Te3 through Nanotwinning [J]. Physical Review Letters, 2017, 119(8): 085501. doi: 10.1103/PhysRevLett.119.085501
    [208]
    LI G D, MOROZOV S I, ZHANG Q J, et al. Enhanced strength through nanotwinning in the thermoelectric semiconductor InSb [J]. Physical Review Letters, 2017, 119(21): 215503. doi: 10.1103/PhysRevLett.119.215503
    [209]
    LI G D, AN Q, MOROZOV S I, et al. Mechanical softening of thermoelectric semiconductor Mg2Si from nanotwinning [J]. Scripta Materialia, 2018, 157: 90–94. doi: 10.1016/j.scriptamat.2018.08.002
    [210]
    WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials [J]. Progress in Materials Science, 2015, 72: 1–60. doi: 10.1016/j.pmatsci.2015.01.003
    [211]
    LIN Z J, WANG L, ZHANG J Z, et al. Nanoscale twinning-induced elastic strengthening in silicon carbide nanowires [J]. Scripta Materialia, 2010, 63(10): 981–984. doi: 10.1016/j.scriptamat.2010.07.023
    [212]
    WANG D H, XU D, WANG Q, et al. Periodically twinned SiC nanowires [J]. Nanotechnology, 2008, 19(21): 215602. doi: 10.1088/0957-4484/19/21/215602
    [213]
    HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
    [214]
    HUANG C, PENG X H, YANG B, et al. Molecular dynamics simulations for responses of nanotwinned diamond films under nanoindentation [J]. Ceramics International, 2017, 43(18): 16888–16894. doi: 10.1016/j.ceramint.2017.09.089
    [215]
    CHAVOSHI S Z, XU S Z. Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading [J]. Materialia, 2018, 3: 304–325. doi: 10.1016/J.MTLA.2018.09.003
    [216]
    CHAVOSHI S Z, TSCHOPP M A, BRANICIO P S. Transition of deformation mechanisms in nanotwinned single crystalline SiC [J]. Philosophical Magazine, 2019, 99(21): 2636–2660. doi: 10.1080/14786435.2019.1637033
    [217]
    WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [218]
    WANG G, ZHAO J, ZHANG H, et al. Advances in quasi-isentropic compression experiments at institute of fluid physics of CAEP [J]. The European Physical Journal Special Topics, 2012, 206(1): 163–172. doi: 10.1140/epjst/e2012-01597-y
    [219]
    薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159

    XUE Q X, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [220]
    SMITH R, ASAY J, COLLINS G. Laser driven quasi-isentropic compression experiments (ICE) for extracting EOS and phase transition information [C]//Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore, USA: American Physical Society, 2005.
    [221]
    AMADOU N, BRAMBRINK E, BENUZZI-MOUNAIX A, et al. Laser-driven quasi-isentropic compression experiments and numerical studies of the iron alpha-epsilon transition in the context of planetology [J]. AIP Conference Proceedings, 2012, 1426(1): 1525–1528. doi: 10.1063/1.3686573
    [222]
    种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验 [J]. 高压物理学报, 2018, 32(5): 051101. doi: 10.11858/gywlxb.20180511

    CHONG T, TAN F L, WANG G J, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051101. doi: 10.11858/gywlxb.20180511
    [223]
    种涛. 斜波加载下铋、锡等典型金属材料的相变动力学研究 [D]. 合肥: 中国科学技术大学, 2018.

    CHONG T. Study on kinetics of phase transition of metal under ramp wave loading [D]. Hefei: University of Science and Technology of China, 2018.
    [224]
    种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学, 2014, 44(6): 630–636. doi: 10.1360/132013-378

    CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica, 2014, 44(6): 630–636. doi: 10.1360/132013-378
    [225]
    DAVIAU K, LEE K K M. Decomposition of silicon carbide at high pressures and temperatures [J]. Physical Review B, 2017, 96(17): 174102. doi: 10.1103/PhysRevB.96.174102
  • Relative Articles

    [1]WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
    [2]MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
    [3]ZHANG Wangying, LIU Chaoting, CHEN Rui, JIANG Chengao, LI Peifang, YAN Yan. Superconductivity in Novel Actinide Filled Boron Carbon Clathrates[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766
    [4]ZHENG Feili, YAN Jian, HUANG Yanping, LUO Xuan, CHI Zhenhua, LYU Xindeng, CUI Tian. Physical Properties of Two-Dimensional Layered FePSe3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021101. doi: 10.11858/gywlxb.20230617
    [5]LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
    [6]ZHAO Wendi, DUAN Defang, CUI Tian. New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
    [7]GAO Hao'an, MA Shuailing, BAO Kuo, ZHU Pinwen, CUI Tian. Synthesis of Hard Superconductive Ternary Transition Metal Carbide under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
    [8]SUN Ying, ZHONG Xin, LÜ Jian, MA Yanming. Pressure-Induced Metallization and Novel Superconductivity of Chalcogen Hydrides[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010102. doi: 10.11858/gywlxb.20170629
    [9]REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005
    [10]HU Yong-Jin, HE Kai-Hua. Electronic Structure and Photoelectric Properties ofZnTe under High Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 641-647. doi: 10.11858/gywlxb.2014.06.001
    [11]CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang. The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
    [12]ZHANG Chun-Bin, LI Shao-Meng, TENG Ya-Gang. Electronic Structures and Equation of State for Aluminium under High Pressure[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 272-278 . doi: 10.11858/gywlxb.1994.04.005
    [13]HAN Shun-Hui, DAI Xiang, CHEN Qi, HAN Han, ZHI Jin-Biao. Effect of Pressure on the Superconducting Transition Temperature of the Single Phase Bi-Pb-Sr-Ca-Cu-O Sample with Tc=110 K[J]. Chinese Journal of High Pressure Physics, 1993, 7(1): 33-36 . doi: 10.11858/gywlxb.1993.01.004
    [14]HAN Cui-Ying. Properties of High-Tc Superconductors under High Pressure and Low Temperature[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 35-45 . doi: 10.11858/gywlxb.1991.01.006
    [15]CUI De-Liang, LIU Hong-Jian, WANG Yi-Feng, LI Li-Ping, SU Wen-Hui. Effects of High Pressure Treatment on the Superconductivity of BiSrCaCu2Oy[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 20-26 . doi: 10.11858/gywlxb.1991.01.004
    [16]SUN Bao-Quan, WANG Yi-Feng, LIU Hong-Jian, LI Li-Ping, SU Wen-Hui. The Influences of Cool- and Hot-Pressure Treatment on the Phase Transition and Superconductivity of YBa2Cu3O7-[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 246-253 . doi: 10.11858/gywlxb.1990.04.002
    [17]LIU Zhen-Xing, LIN Ming-Zhu, TANG Ming-Hua, MENG Xian-Ren, LIN Zhen-Jin, SANG Li-Hua, TU Qing-Yun, HAN Wei, REN Yan-Ru. Influence of Pressure on the TlPbxBaCa3Cu3O Superconductors[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 241-245 . doi: 10.11858/gywlxb.1989.03.010
    [18]JIN Bi, ZHU Zai-Wan. Phase Transitions of Ge and Si under High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 39-49 . doi: 10.11858/gywlxb.1987.01.006
    [19]HAI Yu-Ying, ZHANG Wan-Xiang. Preparations of Large-Scale YBaCuO System Sample and Its Superconductivity[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 173-175 . doi: 10.11858/gywlxb.1987.02.011
    [20]HUANG Xin-Ming, HE Shou-An, WANG Wen-Kui. Superconductivity of Crystallized Phases from Amorphous La80Al20[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 130-137 . doi: 10.11858/gywlxb.1987.02.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(39)

    Article Metrics

    Article views(3777) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return