Citation: | LI Wanghui, FENG Lanxi, ZHANG Xiaoqing, YAO Xiaohu. Brief Review of Research Progress on the Deformation, Damage and Failure of Silicon Carbide under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040103. doi: 10.11858/gywlxb.20210783 |
[1] |
GOOCH JR W A. An overview of ceramic armor applications [J]. Ceramic Transactions, 2002, 134: 3–21.
|
[2] |
HOGG P J. Composites in armor [J]. Science, 2006, 314(5802): 1100–1101. doi: 10.1126/science.1131118
|
[3] |
HELVAJIAN H. Microengineering aerospace systems [M]. El Segundo, CA: The Aerospace Press, 1999.
|
[4] |
DROLSHAGEN G. Impact effects from small size meteoroids and space debris [J]. Advances in Space Research, 2008, 41(7): 1123–1131. doi: 10.1016/j.asr.2007.09.007
|
[5] |
MCBRIDE N, MCDONNELL J A M. Meteoroid impacts on spacecraft: sporadics, streams, and the 1999 Leonids [J]. Planetary and Space Science, 1999, 47(8/9): 1005–1013. doi: 10.1016/S0032-0633(99)00023-9
|
[6] |
CHRISTIANSEN E L, HYDE J L, BERNHARD R P. Space shuttle debris and meteoroid impacts [J]. Advances in Space Research, 2004, 34(5): 1097–1103. doi: 10.1016/j.asr.2003.12.008
|
[7] |
王东方, 肖伟科, 庞宝君. NASA二级轻气炮设备简介 [J]. 实验流体力学, 2014, 28(4): 99–104. doi: 10.11729/syltlx2014pz02
WANG D F, XIAO W K, PANG B J. A brief introduction on NASA’s two stage light gas guns [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 99–104. doi: 10.11729/syltlx2014pz02
|
[8] |
王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 339–345. doi: 10.11858/gywlxb.2014.03.012
WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339–345. doi: 10.11858/gywlxb.2014.03.012
|
[9] |
曹落霞, 胡海波, 陈永涛, 等. 磁驱动飞片加载下纯铁的冲击相变和层裂特性 [J]. 高压物理学报, 2015, 29(4): 248–254. doi: 10.11858/gywlxb.2015.04.002
CAO L X, HU H B, CHEN Y T, et al. Shock-induced phase transition and spallation in pure iron under magnetically driven flyer plate loading [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 248–254. doi: 10.11858/gywlxb.2015.04.002
|
[10] |
牛锦超, 龚自正, 曹燕, 等. 8 km/s激光驱动飞片发射技术实验研究 [J]. 爆炸与冲击, 2014, 34(2): 129–136. doi: 10.11883/1001-1455(2014)02-0129-08
NIU J C, GONG Z Z, CAO Y, et al. Experimental research on laser-driven flyer plates up to 8 km/s [J]. Explosion and Shock Waves, 2014, 34(2): 129–136. doi: 10.11883/1001-1455(2014)02-0129-08
|
[11] |
王志昊, 李勇, 覃文志, 等. 激光驱动飞片飞行特征研究进展 [J]. 含能材料, 2019, 27(3): 255–264. doi: 10.11943/CJEM2018235
WANG Z H, LI Y, QIN W Z, et al. Research progress in the flight characteristics of laser-driven flyer [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 255–264. doi: 10.11943/CJEM2018235
|
[12] |
税敏, 储根柏, 席涛, 等. 神光Ⅲ原型装置激光驱动高速飞片实验研究进展 [J]. 物理学报, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703
SHUI M, CHU G B, XI T, et al. Experimental progress of laser-driven flyers at the SG-Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703
|
[13] |
单连强, 高宇林, 辛建婷, 等. 激光驱动气库靶对铝的准等熵压缩实验研究 [J]. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
SHAN L Q, GAO Y L, XIN J T, et al. Laser-driven reservoir target for quasi-isentropic compression in aluminum [J]. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
|
[14] |
SAVAGE M E, ATHERTON B W, BLISS D E, et al. The Z pulsed power driver since refurbishment [R]. Albuquerque: Sandia National Laboratories, 2010.
|
[15] |
王桂吉, 赵剑衡, 孙承纬, 等. 磁驱动准等熵加载装置CQ-4的加载能力及主要应用 [J]. 实验力学, 2015, 30(2): 252–262. doi: 10.7520/1001-4888-15-001
WANG G J, ZHAO J H, SUN C W, et al. On the loading capability and main application of magnetically driven quasi-isentropic compression device CQ-4 [J]. Journal of Experimental Mechanics, 2015, 30(2): 252–262. doi: 10.7520/1001-4888-15-001
|
[16] |
LANE J M D, FOILES S M, LIM H, et al. Strain-rate dependence of ramp-wave evolution and strength in tantalum [J]. Physical Review B, 2016, 94(6): 064301. doi: 10.1103/PhysRevB.94.064301
|
[17] |
王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展 [J]. 物理学报, 2014, 63(19): 196201–280. doi: 10.7498/aps.63.196201
WANG G L, GUO S, SHEN Z W, et al. Recent advances in hyper-velocity flyer launch experiments on PTS [J]. Acta Physica Sinica, 2014, 63(19): 196201–280. doi: 10.7498/aps.63.196201
|
[18] |
REMINGTON B A, ALLEN P, BRINGA E M, et al. Material dynamics under extreme conditions of pressure and strain rate [J]. Materials Science and Technology, 2006, 22(4): 474–488. doi: 10.1179/174328406X91069
|
[19] |
REMINGTON T P, REMINGTON B A, HAHN E N, et al. Deformation and failure in extreme regimes by high-energy pulsed lasers: a review [J]. Materials Science and Engineering: A, 2017, 688: 429–458. doi: 10.1016/j.msea.2017.01.114
|
[20] |
ZHANG F C, CUI H W, RUAN X X, et al. The study of electronic structure and optical properties of 2H-SiC [J]. Applied Mechanics and Materials, 2014, 556: 535–538. doi: 10.4028/WWW.SCIENTIFIC.NET/AMM.556-562.535
|
[21] |
孙晓波, 高玉波, 徐鹏. 冲击载荷下Al2O3陶瓷的失效与破碎特性 [J]. 高压物理学报, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
SUN X B, GAO Y B, XU P. Failure and fracture characteristics of Al2O3 ceramics under impact loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
|
[22] |
刘占芳, 冯晓伟, 张凯, 等. 氧化铝陶瓷动态压缩强度的高压和高应变率效应 [J]. 功能材料, 2010, 41(12): 2087–2090.
LIU Z F, FENG X W, ZHANG K, et al. Effects of high pressure and high strain rate on dynamic compressive strength of alumina [J]. Journal of Functional Materials, 2010, 41(12): 2087–2090.
|
[23] |
王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究 [J]. 固体力学学报, 2008, 29(3): 245–249. doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005
WANG Y G, ZHOU F H. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245–249. doi: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005
|
[24] |
孙占峰, 贺红亮, 李平, 等. AD95陶瓷破坏波问题的实验研究 [J]. 高压物理学报, 2014, 28(2): 129–136. doi: 10.11858/gywlxb.2014.02.001
SUN Z F, HE H L, LI P, et al. Experimental study on the problem of failure wave in AD95 ceramics [J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129–136. doi: 10.11858/gywlxb.2014.02.001
|
[25] |
包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462
|
[26] |
段士伟, 李永池, 李平. 陶瓷材料SHPB实验的改进垫块法 [J]. 实验力学, 2013, 28(5): 607–613. doi: 10.7520/1001-4888-13-025
DUAN S W, LI Y C, LI P. An improved inserts form in SHPB experiment for ceramic material [J]. Journal of Experimental Mechanics, 2013, 28(5): 607–613. doi: 10.7520/1001-4888-13-025
|
[27] |
段士伟, 李永池, 高光发, 等. 陶瓷的平板撞击拉伸损伤演化表征研究 [J]. 弹道学报, 2013, 25(1): 59–61, 76. doi: 10.3969/j.issn.1004-499X.2013.01.012
DUAN S W, LI Y C, GAO G F, et al. Characterization and tensile evaluation of ceramics under plate-impact conditions [J]. Journal of Ballistics, 2013, 25(1): 59–61, 76. doi: 10.3969/j.issn.1004-499X.2013.01.012
|
[28] |
任文科, 高光发, 朴春华, 等. 碳化硼陶瓷复合靶板抗侵彻性能实验研究 [J]. 高压物理学报, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
REN W K, GAO G F, PIAO C H, et al. Experimental study of ballistic performance for boron carbide ceramic composite targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
|
[29] |
张先锋, 李永池. 约束及增韧对氧化铝陶瓷抗射流侵彻性能的影响 [J]. 爆炸与冲击, 2009, 29(2): 149–154. doi: 10.11883/1001-1455(2009)02-0149-06
ZHANG X F, LI Y C. Constraining and toughening effects alumina ceramic targets on anti-penetration properties of to shaped charge jets [J]. Explosion and Shock Waves, 2009, 29(2): 149–154. doi: 10.11883/1001-1455(2009)02-0149-06
|
[30] |
李永池, 王道荣, 姚磊, 等. 陶瓷材料的抗侵彻机理和陶瓷锥演化的数值模拟 [J]. 弹道学报, 2004, 16(4): 12–17. doi: 10.3969/j.issn.1004-499X.2004.04.003
LI Y C, WANG D R, YAO L, et al. A numerical simulation on anti-penetration mechanism and ceramic cone evolution of ceramic targets [J]. Journal of Ballistics, 2004, 16(4): 12–17. doi: 10.3969/j.issn.1004-499X.2004.04.003
|
[31] |
谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. doi: 10.3969/j.issn.1000-1093.2016.04.008
TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. doi: 10.3969/j.issn.1000-1093.2016.04.008
|
[32] |
王长利, 周刚, 马坤, 等. 爆炸成型弹丸对陶瓷材料的侵彻实验研究 [J]. 兵器材料科学与工程, 2017, 40(3): 94–98. doi: 10.14024/j.cnki.1004-244x.20170427.007
WANG C L, ZHOU G, MA K, et al. Experimental study of EFP penetrating ceramic armor [J]. Ordnance Material Science and Engineering, 2017, 40(3): 94–98. doi: 10.14024/j.cnki.1004-244x.20170427.007
|
[33] |
SUBHASH G, MAITI S, GEUBELLE P H, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics [J]. Journal of the American Ceramic Society, 2008, 91(9): 2777–2791. doi: 10.1111/j.1551-2916.2008.02624.x
|
[34] |
NORMANDIA M J. Impact response and analysis of several silicon carbides [J]. International Journal of Applied Ceramic Technology, 2004, 1(3): 226–234. doi: 10.1111/j.1744-7402.2004.tb00174.x
|
[35] |
LI T, YANG Y, YU X, et al. Micro-structure response and fracture mechanisms of C/SiC composites subjected to low-velocity ballistic penetration [J]. Ceramics International, 2017, 43(9): 6910–6918. doi: 10.1016/j.ceramint.2017.02.113
|
[36] |
王鹏. 碳化硅陶瓷抗弹性能研究[D]. 南京: 南京理工大学, 2012.
WANG P. Research of capacity for penetrating resistance of SiC ceramic [D]. Nanjing: Nanjing University of Science andTechnology, 2012.
|
[37] |
ZINSZNER J L, FORQUIN P, ROSSIQUET G. Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact [J]. International Journal of Impact Engineering, 2015, 76: 9–19. doi: 10.1016/j.ijimpeng.2014.07.007
|
[38] |
FORQUIN P, ROSSIQUET G, ZINSZNER J L, et al. Microstructure influence on the fragmentation properties of dense silicon carbides under impact [J]. Mechanics of Materials, 2018, 123: 59–76. doi: 10.1016/J.MECHMAT.2018.03.007
|
[39] |
GAMA B A, LOPATNIKOV S L, GILLESPIE JR J W. Hopkinson bar experimental technique: a critical review [J]. Applied Mechanics Reviews, 2004, 57(4): 223–250. doi: 10.1115/1.1704626
|
[40] |
FOLLANSBEE P S. The hopkinson bar [M]//BOYER H E, GALL T L. Metals Handbook. Metals Park: American Society for Metals, 1985: 198−217.
|
[41] |
HUH H, KANG W J, HAN S S. A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals [J]. Experimental Mechanics, 2002, 42(1): 8–17. doi: 10.1007/BF02411046
|
[42] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. doi: 10.11883/1001-1455(2014)06-0641-17
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. doi: 10.11883/1001-1455(2014)06-0641-17
|
[43] |
RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. doi: 10.1111/j.1151-2916.1994.tb06987.x
|
[44] |
SHIH C J, MEYERS M A, NESTERENKO V F, et al. Damage evolution in dynamic deformation of silicon carbide [J]. Acta Materialia, 2000, 48(9): 2399–2420. doi: 10.1016/S1359-6454(99)00409-7
|
[45] |
SARVA S, NEMAT-NASSER S. Dynamic compressive strength of silicon carbide under uniaxial compression [J]. Materials Science and Engineering: A, 2001, 317(1/2): 140–144. doi: 10.1016/S0921-5093(01)01172-8
|
[46] |
BOURNE N, MILLETT J, PICKUP I. Delayed failure in shocked silicon carbide [J]. Journal of Applied Physics, 1997, 81(9): 6019–6023. doi: 10.1063/1.364450
|
[47] |
PICKUP I M, BARKER A K. Damage kinetics in silicon carbide [J]. AIP Conference Proceedings, 1998, 429(1): 513–516. doi: 10.1063/1.55698
|
[48] |
WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression [J]. Acta Materialia, 2004, 52(2): 355–367. doi: 10.1016/j.actamat.2003.09.036
|
[49] |
靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014.
JIN X Q. Dynamic fragmentation processes of ceramic cylinders under quasi-static and dynamic compression [D]. Ningbo: Ningbo University, 2014
|
[50] |
孙红婵, 胡冰, 李晨辉, 等. 钨丝掺杂碳化硅的高速冲击力学性能研究 [J]. 中国陶瓷, 2014, 50(12): 49–51. doi: 10.16521/j.cnki.issn.1001-9642.2014.12.007
SUN H C, HU B, LI C H, et al. The research on high speed impact mechanical properties of W mix SiC [J]. China Ceramics, 2014, 50(12): 49–51. doi: 10.16521/j.cnki.issn.1001-9642.2014.12.007
|
[51] |
高远飞. 氧化铝、碳化硅及Al2O3/SiC复相陶瓷高应变率形变研究[D]. 北京: 中国地质大学(北京), 2014.
GAO Y F. Study on high strain rate deformation of alumina, silicon carbide ceramics and Al2O3/SiC nanocomposites [D]. Beijing: China University of Geosciences, 2014.
|
[52] |
WANG Z Y, LI P F, SONG W D. Inelastic deformation micromechanism and modified fragmentation model for silicon carbide under dynamic compression [J]. Materials & Design, 2018, 157: 244–250. doi: 10.1016/j.matdes.2018.07.032
|
[53] |
LI X, ZHANG K, KONIETZKY H, et al. Experimental study on the dynamic mechanical behaviors of silicon carbide ceramic after thermal shock [J]. Nuclear Materials and Energy, 2020, 24: 100774. doi: 10.1016/j.nme.2020.100774
|
[54] |
AHRENS T J, GREGSON JR V G. Shock compression of crustal rocks: data for quartz, calcite, and plagioclase rocks [J]. Journal of Geophysical Research, 1964, 69(22): 4839–4874. doi: 10.1029/JZ069i022p04839
|
[55] |
KINSLOW R. High-velocity impact phenomena [M]. New York: Academic Press, 1970.
|
[56] |
GUST W H, ROYCE E B. Axial yield strengths and two successive phase transition stresses for crystalline silicon [J]. Journal of Applied Physics, 1971, 42(5): 1897–1905. doi: 10.1063/1.1660465
|
[57] |
GUST W H, HOLT A C, ROYCE E B. Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds [J]. Journal of Applied Physics, 1973, 44(2): 550–560. doi: 10.1063/1.1662224
|
[58] |
KIPP M E, GRADY D E. Shock compression and release in high-strength ceramics [R]. Albuquerque: Sandia National Laboratories, 1989.
|
[59] |
GRADY D E. Shock-wave properties of brittle solids [J]. AIP Conference Proceedings, 1996, 370(1): 9–20. doi: 10.1063/1.50579
|
[60] |
FENG R, RAISER G F, GUPTA Y M. Shock response of polycrystalline silicon carbide undergoing inelastic deformation [J]. Journal of Applied Physics, 1996, 79(3): 1378–1387. doi: 10.1063/1.361036
|
[61] |
FENG R, RAISER G F, GUPTA Y M. Material strength and inelastic deformation of silicon carbide under shock wave compression [J]. Journal of Applied Physics, 1998, 83(1): 79–86. doi: 10.1063/1.366704
|
[62] |
YUAN G, FENG R, GUPTA Y M. Compression and shear wave measurements to characterize the shocked state in silicon carbide [J]. Journal of Applied Physics, 2001, 89(10): 5372–5380. doi: 10.1063/1.1365438
|
[63] |
SEKINE T, KOBAYASHI T. Shock compression of 6H polytype SiC to 160 GPa [J]. Physical Review B, 1997, 55(13): 8034–8037. doi: 10.1103/PhysRevB.55.8034
|
[64] |
ZHU Y Q, SEKINE T, KOBAYASHI T, et al. Shock-induced phase transitions among SiC polytypes [J]. Journal of Materials Science, 1998, 33(24): 5883–5890. doi: 10.1023/A:1004482922441
|
[65] |
VOGLER T J, REINHART W D, CHHABILDAS L C, et al. Hugoniot and strength behavior of silicon carbide [J]. Journal of Applied Physics, 2006, 99(2): 023512. doi: 10.1063/1.2159084
|
[66] |
PARIS V, FRAGE N, DARIEL M P, et al. Divergent impact study of the compressive failure threshold in SiC and B4C [J]. International Journal of Impact Engineering, 2011, 38(4): 228–237. doi: 10.1016/j.ijimpeng.2010.10.027
|
[67] |
GAUTAM P C, GUPTA R, SHARMA A C, et al. Determination of Hugoniot elastic limit (HEL) and equation of state (EOS) of ceramic materials in the pressure region 20 GPa to 100 GPa [J]. Procedia Engineering, 2017, 173: 198–205. doi: 10.1016/j.proeng.2016.12.058
|
[68] |
MILLETT J C F, BOURNE N K, DANDEKAR D P. Delayed failure in a shock-loaded silicon carbide [J]. Journal of Applied Physics, 2005, 97(11): 113513. doi: 10.1063/1.1923161
|
[69] |
WINKLER W D, STILP A J. Spallation behavior of TiB2, SiC, and B4C under planar impact tensile stresses [M]//SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter–1991. Amsterdam: Elsevier, 1992: 475–478.
|
[70] |
BARTKOWSKI P, DANDEKAR D P. Spall strengths of sintered and hot pressed silicon carbide [J]. AIP Conference Proceedings, 1996, 370(1): 535–538. doi: 10.1063/1.50654
|
[71] | |
[72] |
DANDEKAR D P. Spall strength of silicon carbide under normal and simultaneous compression-shear shock wave loading [J]. International Journal of Applied Ceramic Technology, 2004, 1(3): 261–268. doi: 10.1111/j.1744-7402.2004.tb00178.x
|
[73] |
PARIS V, FRAGE N, DARIEL M P, et al. The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering [J]. International Journal of Impact Engineering, 2010, 37(11): 1092–1099. doi: 10.1016/j.ijimpeng.2010.06.008
|
[74] |
SAVINYKH A S, KANEL G I, RAZORENOV S V, et al. Evolution of shock waves in SiC ceramic [J]. Technical Physics, 2013, 58(7): 973–977. doi: 10.1134/S1063784213070207
|
[75] |
GARKUSHIN G V, RAZORENOV S V, RUMYANTSEV V I, et al. Dynamic strength of reaction-sintered silicon carbide ceramics [J]. Mechanics of Solids, 2014, 49(6): 616–622. doi: 10.3103/S0025654414060028
|
[76] |
PAISLEY D L, LUO S N, GREENFIELD S R, et al. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications [J]. Review of Scientific Instruments, 2008, 79(2): 023902. doi: 10.1063/1.2839399
|
[77] |
ZHAO S T, KAD B, REMINGTON B A, et al. Directional amorphization of boron carbide subjected to laser shock compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12088–12093. doi: 10.1073/pnas.1604613113
|
[78] |
ZHAO S, HAHN E N, KAD B, et al. Amorphization and nanocrystallization of silicon under shock compression [J]. Acta Materialia, 2016, 103: 519–533. doi: 10.1016/j.actamat.2015.09.022
|
[79] |
ZHAO S T, KAD B, WEHRENBERG C E, et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9791–9796. doi: 10.1073/pnas.1708853114
|
[80] |
ASHITKOV S I, AGRANAT M B, KANEL’G I, et al. Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses [J]. JETP Letters, 2010, 92(8): 516–520. doi: 10.1134/S0021364010200051
|
[81] |
WHITLEY V, MCGRANE S, BOLME C, et al. The elastic-plastic response of metal films subjected to ultrafast laser-generated shocks [C]//Proceedings of the 17th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter. Washington DC, USA: American Physical Society, 2011.
|
[82] |
ZHAO S, FLANAGAN R, HAHN E N, et al. Shock-induced amorphization in silicon carbide [J]. Acta Materialia, 2018, 158: 206–213. doi: 10.1016/j.actamat.2018.07.047
|
[83] |
TRACY S J, SMITH R F, WICKS J K, et al. In situ: observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction [J]. Physical Review B, 2019, 99(21): 214106. doi: 10.1103/PhysRevB.99.214106
|
[84] |
GRADY D E. Shock-wave strength properties of boron carbide and silicon carbide [J]. Journal de Physique IV, 1994, 4(C8): C8-385–C8-391. doi: 10.1051/jp4:1994859
|
[85] |
SMITH R F, MINICH R W, RUDD R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon [J]. Physical Review B, 2012, 86(24): 245204. doi: 10.1103/PhysRevB.86.245204
|
[86] |
SMITH R F, EGGERT J H, RUDD R E, et al. High strain-rate plastic flow in Al and Fe [J]. Journal of Applied Physics, 2011, 110(12): 123515. doi: 10.1063/1.3670001
|
[87] |
BEHNER T, ORPHAL D L, HOHLER V, et al. Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s [J]. International Journal of Impact Engineering, 2006, 33(1): 68–79. doi: 10.1016/j.ijimpeng.2006.09.082
|
[88] |
ANDERSON JR C E, BEHNER T, HOLMQUIST T J, et al. Penetration response of silicon carbide as a function of impact velocity [J]. International Journal of Impact Engineering, 2011, 38(11): 892–899. doi: 10.1016/j.ijimpeng.2011.06.002
|
[89] |
COX B N, GAO H J, GROSS D, et al. Modern topics and challenges in dynamic fracture [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 565–596. doi: 10.1016/j.jmps.2004.09.002
|
[90] |
FAHRENTHOLD E P. A continuum damage model for fracture of brittle solids under dynamic loading [J]. Journal of Applied Mechanics, 1991, 58(4): 904–909. doi: 10.1115/1.2897704
|
[91] |
RAJENDRAN A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact Engineering, 1994, 15(6): 749–768. doi: 10.1016/0734-743X(94)90033-H
|
[92] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. doi: 10.1063/1.46199
|
[93] |
SIMHA C H M, BLESS S J, BEDFORD A. Computational modeling of the penetration response of a high-purity ceramic [J]. International Journal of Impact Engineering, 2002, 27(1): 65–86. doi: 10.1016/S0734-743X(01)00036-7
|
[94] |
RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2627–2646. doi: 10.1016/0020-7683(94)00286-6
|
[95] |
ESPINOSA H D. On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation [J]. International Journal of Solids and Structures, 1995, 32(21): 3105–3128. doi: 10.1016/0020-7683(94)00300-L
|
[96] |
ESPINOSA H D, XU Y P, BRAR N S. Micromechanics of failure waves in glass: Ⅱ modeling [J]. Journal of the American Ceramic Society, 1997, 80(8): 2074–2085. doi: 10.1111/J.1151-2916.1997.TB03091.X
|
[97] | |
[98] |
张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232. doi: 10.3321/j.issn:1001-1455.2004.03.006
ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232. doi: 10.3321/j.issn:1001-1455.2004.03.006
|
[99] |
RAJENDRAN A M, GROVE D J. Modeling the shock response of silicon carbide, boron carbide and titanium diboride [J]. International Journal of Impact Engineering, 1996, 18(6): 611–631. doi: 10.1016/0734-743X(96)89122-6
|
[100] |
任会兰, 宁建国. 强冲击载荷下氧化铝陶瓷的力学特性及本构模型 [J]. 北京理工大学学报, 2007, 27(9): 761–764, 796. doi: 10.3969/j.issn.1001-0645.2007.09.003
REN H L, NING J G. Mechanical characteristics and constitutive model of alumina ceramic subjected to shock loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(9): 761–764, 796. doi: 10.3969/j.issn.1001-0645.2007.09.003
|
[101] |
HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. doi: 10.1063/1.1468903
|
[102] |
HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact [J]. Journal of Applied Physics, 2005, 97(9): 093502. doi: 10.1063/1.1881798
|
[103] |
唐瑞涛, 徐柳云, 文鹤鸣, 等. 陶瓷材料宏观动态新本构模型 [J]. 高压物理学报, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863
TANG R T, XU L Y, WEN H M, et al. A macroscopic dynamic constitutive model for ceramic materials [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863
|
[104] | |
[105] |
WALLEY S M. Historical review of high strain rate and shock properties of ceramics relevant to their application in armour [J]. Advances in Applied Ceramics, 2010, 109(8): 446–466. doi: 10.1179/174367609X422180
|
[106] |
ZHU J B. Strength of polycrystalline ceramics under shock compression [D]. Nebraska: The University of Nebraska-Lincoln, 2011.
|
[107] |
LEVY S, MOLINARI J F. Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(1): 12–26. doi: 10.1016/j.jmps.2009.09.002
|
[108] |
易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
|
[109] |
易荣成, 王坚茹, 印立魁, 等. 陶瓷易碎弹对铝板的冲击特性研究 [J]. 振动与冲击, 2017, 36(6): 163–167. doi: 10.13465/j.cnki.jvs.2017.06.025
YI R C, WANG J R, YIN L K, et al. Characteristics of ceramic fragile projectiles impacting against aluminum plates [J]. Journal of Vibration and Shock, 2017, 36(6): 163–167. doi: 10.13465/j.cnki.jvs.2017.06.025
|
[110] |
CHAKRABORTY S, ISLAM M R I, SHAW A, et al. A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures [J]. Composite Structures, 2017, 164: 263–276. doi: 10.1016/j.compstruct.2016.12.064
|
[111] |
COOPER I Z, RUBIN M B. Modeling damage in silicon carbide due to an impact stress below the HEL [J]. International Journal of Impact Engineering, 2014, 65: 174–184. doi: 10.1016/j.ijimpeng.2013.11.007
|
[112] |
MERZHIEVSKII L A. Deformation models under intense dynamic loading (review) [J]. Combustion, Explosion, and Shock Waves, 2015, 51(2): 269–283. doi: 10.1134/S0010508215020100
|
[113] |
CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84: 159–170. doi: 10.1016/j.ijimpeng.2015.05.011
|
[114] |
TANG R T, WEN H M. Predicting the perforation of ceramic-faced light armors subjected to projectile impact [J]. International Journal of Impact Engineering, 2017, 102: 55–61. doi: 10.1016/j.ijimpeng.2016.11.008
|
[115] |
ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression [J]. Journal of Engineering Materials and Technology, 2019, 141(1): 011007. doi: 10.1115/1.4040591
|
[116] |
KADAU K, GERMANN T C, LOMDAHL P S. Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L [J]. International Journal of Modern Physics C, 2006, 17(12): 1755–1761. doi: 10.1142/S0129183106010182
|
[117] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
|
[118] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
|
[119] |
VASHISHTA P, KALIA R K, NAKANO A. Multimillion atom simulations of dynamics of wing cracks and nanoscale damage in glass, and hypervelocity impact damage in ceramics [J]. Computer Physics Communications, 2007, 177(1/2): 202–205. doi: 10.1016/j.cpc.2007.02.097
|
[120] |
TERSOFF J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566–5568. doi: 10.1103/PhysRevB.39.5566
|
[121] |
TERSOFF J. Carbon defects and defect reactions in silicon [J]. Physical Review Letters, 1990, 64(15): 1757–1760. doi: 10.1103/PhysRevLett.64.1757
|
[122] |
TERSOFF J. Chemical order in amorphous silicon carbide [J]. Physical Review B, 1994, 49(23): 16349–16352. doi: 10.1103/PhysRevB.49.16349
|
[123] |
ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211. doi: 10.1103/PHYSREVB.71.035211
|
[124] |
VASHISHTA P, KALIA R K, NAKANO A, et al. Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide [J]. Journal of Applied Physics, 2007, 101(10): 103515. doi: 10.1063/1.2724570
|
[125] |
LI W H, YAO X H, ZHANG X Q. Planar impacts on nanocrystalline SiC: a comparison of different potentials [J]. Journal of Materials Science, 2018, 53(9): 6637–6651. doi: 10.1007/s10853-018-1985-1
|
[126] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Atomistic damage mechanisms during hypervelocity projectile impact on AlN: a large-scale parallel molecular dynamics simulation study [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1955–1988. doi: 10.1016/j.jmps.2007.11.004
|
[127] |
BRANICIO P S, NAKANO A, KALIA R K, et al. Shock loading on AlN ceramics: a large scale molecular dynamics study [J]. International Journal of Plasticity, 2013, 51: 122–131. doi: 10.1016/j.ijplas.2013.06.002
|
[128] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic [J]. Physical Review Letters, 2006, 96(6): 065502. doi: 10.1103/PhysRevLett.96.065502
|
[129] |
ZHANG C, KALIA R K, NAKANO A, et al. Hypervelocity impact induced deformation modes in α-alumina [J]. Applied Physics Letters, 2007, 91(7): 071906. doi: 10.1063/1.2753092
|
[130] |
ZHANG C, KALIA R K, NAKANO A, et al. Fracture initiation mechanisms in α-alumina under hypervelocity impact [J]. Applied Physics Letters, 2007, 91(12): 121911. doi: 10.1063/1.2786865
|
[131] |
ZHANG C, KALIA R K, NAKANO A, et al. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading [J]. Journal of Applied Physics, 2008, 103(8): 083508. doi: 10.1063/1.2891797
|
[132] |
KUKSIN A Y, YANILKIN A V. Formation of twins in sapphire under shock wave loading: atomistic simulations [J]. Journal of Applied Physics, 2012, 111(3): 033513. doi: 10.1063/1.3681321
|
[133] |
BRANICIO P S, KALIA R K, NAKANO A, et al. Nanoductility induced brittle fracture in shocked high performance ceramics [J]. Applied Physics Letters, 2010, 97(11): 111903. doi: 10.1063/1.3478003
|
[134] |
ZHANG J Y, BRANICIO P S. Molecular dynamics simulations of plane shock loading in SiC [J]. Procedia Engineering, 2014, 75: 150–153. doi: 10.1016/j.proeng.2013.11.032
|
[135] |
BRANICIO P S, ZHANG J Y, RINO J P, et al. Plane shock loading on mono-and nano-crystalline silicon carbide [J]. Applied Physics Letters, 2018, 112(11): 111909. doi: 10.1063/1.5025583
|
[136] |
BRANICIO P S, ZHANG J Y, RINO J P, et al. Shock-induced microstructural response of mono-and nanocrystalline SiC ceramics [J]. Journal of Applied Physics, 2018, 123(14): 145902. doi: 10.1063/1.5023915
|
[137] |
LI W H, YAO X H, BRANICIO P S, et al. Shock-induced spall in single and nanocrystalline SiC [J]. Acta Materialia, 2017, 140: 274–289. doi: 10.1016/j.actamat.2017.08.036
|
[138] |
LEE W H, YAO X H. First principle investigation of phase transition and thermodynamic properties of SiC [J]. Computational Materials Science, 2015, 106: 76–82. doi: 10.1016/j.commatsci.2015.04.044
|
[139] |
MAKEEV M A, SRIVASTAVA D. Hypersonic velocity impact on α-SiC target: a diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909. doi: 10.1063/1.2894188
|
[140] |
MAKEEV M A, SRIVASTAVA D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/α-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451–2455. doi: 10.1016/j.compscitech.2008.04.040
|
[141] |
MAKEEV M A, SUNDARESH S, SRIVASTAVA D. Shock-wave propagation through pristine α-SiC and carbon-nanotube-reinforced α-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311. doi: 10.1063/1.3152587
|
[142] |
LI W H, HAHN E N, YAO X H, et al. Shock induced damage and fracture in SiC at elevated temperature and high strain rate [J]. Acta Materialia, 2019, 167: 51–70. doi: 10.1016/j.actamat.2018.12.035
|
[143] |
LI W H, HAHN E N, YAO X H, et al. On the grain size dependence of shock responses in nanocrystalline SiC ceramics at high strain rates [J]. Acta Materialia, 2020, 200: 632–651. doi: 10.1016/j.actamat.2020.09.044
|
[144] |
LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression [J]. International Journal of Plasticity, 2021, 138: 102923. doi: 10.1016/j.ijplas.2020.102923
|
[145] |
DAVIAU K, LEE K K M. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell [J]. Physical Review B, 2017, 95(13): 134108. doi: 10.1103/PHYSREVB.95.134108
|
[146] |
李旺辉. 极端条件下碳化硅的变形、损伤与破坏研究[D]. 广州: 华南理工大学, 2018.
LI W H. Investigation on the deformation, damage and fracture of SiC under extreme conditions [D]. Guangzhou: South China University of Technology, 2018.
|
[147] |
PIZZAGALLI L. Stability and mobility of screw dislocations in 4H, 2H and 3C silicon carbide [J]. Acta Materialia, 2014, 78: 236–244. doi: 10.1016/j.actamat.2014.06.053
|
[148] |
LU Y P, HE D W, ZHU J, et al. First-principles study of pressure-induced phase transition in silicon carbide [J]. Physica B: Condensed Matter, 2008, 403(19/20): 3543–3546. doi: 10.1016/j.physb.2008.05.028
|
[149] |
PERDEW J P, WANG Y. Erratum: accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 2018, 98(7): 079904. doi: 10.1103/PhysRevB.98.079904
|
[150] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1997, 78(7): 1396. doi: 10.1103/PhysRevLett.78.1396
|
[151] |
PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
|
[152] |
GORAI S, BHATTACHARYA C. Shock induced phase transition in SiC polytypes [J]. Journal of Applied Physics, 2019, 125(18): 185903. doi: 10.1063/1.5090808
|
[153] |
CATTI M. Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure [J]. Physical Review Letters, 2001, 87(3): 035504. doi: 10.1103/PhysRevLett.87.035504
|
[154] |
LU G, KAXIRAS E. An overview of multiscale simulations of materials [EB/OL]. (2004−01−07)[2021−04−25]. https://arxiv.org/abs/cond-mat/0401073.
|
[155] |
TADMOR E B, ORTIZ M, PHILLIPS R. Quasicontinuum analysis of defects in solids [J]. Philosophical Magazine A, 1996, 73(6): 1529–1563. doi: 10.1080/01418619608243000
|
[156] |
LI J, YIP S. Atomistic measures of materials strength [J]. CMES-Computer Modeling in Engineering & Sciences, 2002, 3(2): 219–228. doi: 10.3970/cmes.2002.003.219
|
[157] |
CAI W, DE KONING M, BULATOV V V, et al. Minimizing boundary reflections in coupled-domain simulations [J]. Physical Review Letters, 2000, 85(15): 3213–3216. doi: 10.1103/PhysRevLett.85.3213
|
[158] |
CAI W, BULATOV V V, JUSTO J F, et al. Intrinsic mobility of a dissociated dislocation in silicon [J]. Physical Review Letters, 2000, 84(15): 3346–3349. doi: 10.1103/PhysRevLett.84.3346
|
[159] |
DONG X Y. Materials-genome-based multiscale modeling of ceramics and laser-assisted machining [D]. Silafaye: Purdue University, 2017.
|
[160] |
YAMASHITA H, HART R, SHARMA T, et al. A review of multiscale methods and their applications in modeling and simulation of engineering problems [J]. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 2016, 3(3): 42–47.
|
[161] |
GUR S, SADAT M R, FRANTZISKONIS G N, et al. The effect of grain-size on fracture of polycrystalline silicon carbide: a multiscale analysis using a molecular dynamics-peridynamics framework [J]. Computational Materials Science, 2019, 159: 341–348. doi: 10.1016/j.commatsci.2018.12.038
|
[162] |
HANSEN N. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801–806. doi: 10.1016/j.scriptamat.2004.06.002
|
[163] |
SZLUFARSKA I, RAMESH K T, WARNER D H. Simulating mechanical behavior of ceramics under extreme conditions [J]. Annual Review of Materials Research, 2013, 43: 131–156. doi: 10.1146/annurev-matsci-071312-121714
|
[164] |
FORQUIN P. Brittle materials at high-loading rates: an open area of research [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2085): 20160436. doi: 10.1098/RSTA.2016.0436
|
[165] |
BALINT D S, DESHPANDE V S, NEEDLEMAN A, et al. Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals [J]. International Journal of Plasticity, 2008, 24(12): 2149–2172. doi: 10.1016/j.ijplas.2007.08.005
|
[166] |
PANDE C S, COOPER K P. Nanomechanics of Hall-Petch relationship in nanocrystalline materials [J]. Progress in Materials Science, 2009, 54(6): 689–706. doi: 10.1016/j.pmatsci.2009.03.008
|
[167] |
ARMSTRONG R W. 60 years of Hall-Petch: past to present nano-scale connections [J]. Materials Transactions, 2014, 55(1): 2–12. doi: 10.2320/matertrans.MA201302
|
[168] |
HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
|
[169] |
PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
|
[170] |
LEE W H, YAO X H, JIAN W R, et al. High-velocity shock compression of SiC via molecular dynamics simulation [J]. Computational Materials Science, 2015, 98: 297–303. doi: 10.1016/j.commatsci.2014.11.029
|
[171] |
YUAN W, PANIGRAHI S K, SU J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scripta Materialia, 2011, 65(11): 994–997. doi: 10.1016/j.scriptamat.2011.08.028
|
[172] |
CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect–a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. doi: 10.1080/09506608.2016.1191808
|
[173] |
AIFANTIS K E, KONSTANTINIDIS A A. Hall-Petch revisited at the nanoscale [J]. Materials Science and Engineering: B, 2009, 163(3): 139–144. doi: 10.1016/j.mseb.2009.05.010
|
[174] |
HAHN E N, MEYERS M A. Grain-size dependent mechanical behavior of nanocrystalline metals [J]. Materials Science and Engineering: A, 2015, 646: 101–134. doi: 10.1016/j.msea.2015.07.075
|
[175] |
CARLTON C E, FERREIRA P J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? [J]. Acta Materialia, 2007, 55(11): 3749–3756. doi: 10.1016/j.actamat.2007.02.021
|
[176] |
BARAI P, WENG G J. Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding [J]. International Journal of Plasticity, 2009, 25(12): 2410–2434. doi: 10.1016/j.ijplas.2009.04.001
|
[177] |
QUEK S S, CHOOI Z H, WU Z X, et al. The inverse hall-petch relation in nanocrystalline metals: a discrete dislocation dynamics analysis [J]. Journal of the Mechanics and Physics of Solids, 2016, 88: 252–266. doi: 10.1016/j.jmps.2015.12.012
|
[178] |
TRELEWICZ J R, SCHUH C A. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation [J]. Acta Materialia, 2007, 55(17): 5948–5958. doi: 10.1016/j.actamat.2007.07.020
|
[179] |
TRELEWICZ J R, SCHUH C A. The Hall-Petch breakdown at high strain rates: optimizing nanocrystalline grain size for impact applications [J]. Applied Physics Letters, 2008, 93(17): 171916. doi: 10.1063/1.3000655
|
[180] |
ZHOU K, LIU B, YAO Y J, et al. Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics [J]. Materials Science and Engineering: A, 2014, 615: 92–97. doi: 10.1016/j.msea.2014.07.066
|
[181] |
FREY M H, PAYNE D A. Grain-size effect on structure and phase transformations for barium titanate [J]. Physical Review B, 1996, 54(5): 3158–3168. doi: 10.1103/PhysRevB.54.3158
|
[182] |
EHRE D, CHAIM R. Abnormal Hall-Petch behavior in nanocrystalline MgO ceramic [J]. Journal of Materials Science, 2008, 43(18): 6139–6143. doi: 10.1007/s10853-008-2936-z
|
[183] |
SOKOL M, HALABI M, MORDEKOVITZ Y, et al. An inverse Hall-Petch relation in nanocrystalline MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS) [J]. Scripta Materialia, 2017, 139: 159–161. doi: 10.1016/j.scriptamat.2017.06.049
|
[184] |
WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al. An extended hardness limit in bulk nanoceramics [J]. Acta Materialia, 2014, 69: 9–16. doi: 10.1016/j.actamat.2014.01.030
|
[185] |
MUCHE D N F, DRAZIN J W, MARDINLY J, et al. Colossal grain boundary strengthening in ultrafine nanocrystalline oxides [J]. Materials Letters, 2017, 186: 298–300. doi: 10.1016/j.matlet.2016.10.035
|
[186] |
RYOU H, DRAZIN J W, WAHL K J, et al. Below the hall-petch limit in nanocrystalline ceramics [J]. ACS Nano, 2018, 12(4): 3083–3094. doi: 10.1021/acsnano.7b07380
|
[187] |
BRINGA E M, CARO A, WANG Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
|
[188] |
VO N Q, AVERBACK R S, BELLON P, et al. Yield strength in nanocrystalline Cu during high strain rate deformation [J]. Scripta Materialia, 2009, 61(1): 76–79. doi: 10.1016/j.scriptamat.2009.03.003
|
[189] |
WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
|
[190] |
WILKERSON J W. On the micromechanics of void dynamics at extreme rates [J]. International Journal of Plasticity, 2017, 95: 21–42. doi: 10.1016/j.ijplas.2017.03.008
|
[191] |
SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
|
[192] |
LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films [J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
|
[193] |
SZLUFARSKA I, NAKANO A, VASHISHTA P. A crossover in the mechanical response of nanocrystalline ceramics [J]. Science, 2005, 309(5736): 911–914. doi: 10.1126/science.1114411
|
[194] |
MO Y F, SZLUFARSKA I. Simultaneous enhancement of toughness, ductility, and strength of nanocrystalline ceramics at high strain-rates [J]. Applied Physics Letters, 2007, 90(18): 181926. doi: 10.1063/1.2736652
|
[195] |
SHINODA Y, NAGANO T, GU H, et al. Superplasticity of silicon carbide [J]. Journal of the American Ceramic Society, 1999, 82(10): 2916–2918. doi: 10.1111/J.1151-2916.1999.TB02178.X
|
[196] |
WANANURUKSAWONG R, SHINODA Y, AKATSU T, et al. High-strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression [J]. Scripta Materialia, 2015, 103: 22–25. doi: 10.1016/j.scriptamat.2015.02.028
|
[197] |
ZHANG J Y, SHA Z D, BRANICIO P S, et al. Superplastic nanocrystalline ceramics at room temperature and high strain rates [J]. Scripta Materialia, 2013, 69(7): 525–528. doi: 10.1016/j.scriptamat.2013.06.017
|
[198] |
NANDI P K, ANNAMAREDDY V A, EAPEN J. Role of CSL boundaries on displacement cascades in β-SiC [J]. MRS Online Proceedings Library, 2013, 1514: 43–48. doi: 10.1557/opl.2013.61
|
[199] |
SUN L G, HE X Q, LU J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts [J]. NJP Computational Materials, 2018, 4(1): 6. doi: 10.1038/s41524-018-0062-2
|
[200] |
LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. doi: 10.1126/science.1159610
|
[201] |
LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.1092905
|
[202] |
LI X Y, YIN S, OH S H, et al. Hardening and toughening mechanisms in nanotwinned ceramics [J]. Scripta Materialia, 2017, 133: 105–112. doi: 10.1016/j.scriptamat.2017.02.003
|
[203] |
AN Q, GODDARD Ⅲ W A, XIE K Y, et al. Superstrength through nanotwinning [J]. Nano Letters, 2016, 16(12): 7573–7579. doi: 10.1021/acs.nanolett.6b03414
|
[204] |
AN Q, GODDARD Ⅲ W A. Nanotwins soften boron-rich boron carbide (B13C2) [J]. Applied Physics Letters, 2017, 110(11): 111902. doi: 10.1063/1.4978644
|
[205] |
KUNKA C, AN Q, RUDAWSKI N, et al. Nanotwinning and amorphization of boron suboxide [J]. Acta Materialia, 2018, 147: 195–202. doi: 10.1016/j.actamat.2018.01.048
|
[206] |
KUNKA C, YANG X K, AN Q, et al. Icosahedral superstrength at the nanoscale [J]. Physical Review Materials, 2018, 2(6): 063606. doi: 10.1103/PhysRevMaterials.2.063606
|
[207] |
LI G D, AYDEMIR U, MOROZOV S I, et al. Superstrengthening Bi2Te3 through Nanotwinning [J]. Physical Review Letters, 2017, 119(8): 085501. doi: 10.1103/PhysRevLett.119.085501
|
[208] |
LI G D, MOROZOV S I, ZHANG Q J, et al. Enhanced strength through nanotwinning in the thermoelectric semiconductor InSb [J]. Physical Review Letters, 2017, 119(21): 215503. doi: 10.1103/PhysRevLett.119.215503
|
[209] |
LI G D, AN Q, MOROZOV S I, et al. Mechanical softening of thermoelectric semiconductor Mg2Si from nanotwinning [J]. Scripta Materialia, 2018, 157: 90–94. doi: 10.1016/j.scriptamat.2018.08.002
|
[210] |
WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials [J]. Progress in Materials Science, 2015, 72: 1–60. doi: 10.1016/j.pmatsci.2015.01.003
|
[211] |
LIN Z J, WANG L, ZHANG J Z, et al. Nanoscale twinning-induced elastic strengthening in silicon carbide nanowires [J]. Scripta Materialia, 2010, 63(10): 981–984. doi: 10.1016/j.scriptamat.2010.07.023
|
[212] |
WANG D H, XU D, WANG Q, et al. Periodically twinned SiC nanowires [J]. Nanotechnology, 2008, 19(21): 215602. doi: 10.1088/0957-4484/19/21/215602
|
[213] |
HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
|
[214] |
HUANG C, PENG X H, YANG B, et al. Molecular dynamics simulations for responses of nanotwinned diamond films under nanoindentation [J]. Ceramics International, 2017, 43(18): 16888–16894. doi: 10.1016/j.ceramint.2017.09.089
|
[215] |
CHAVOSHI S Z, XU S Z. Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading [J]. Materialia, 2018, 3: 304–325. doi: 10.1016/J.MTLA.2018.09.003
|
[216] |
CHAVOSHI S Z, TSCHOPP M A, BRANICIO P S. Transition of deformation mechanisms in nanotwinned single crystalline SiC [J]. Philosophical Magazine, 2019, 99(21): 2636–2660. doi: 10.1080/14786435.2019.1637033
|
[217] |
WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
|
[218] |
WANG G, ZHAO J, ZHANG H, et al. Advances in quasi-isentropic compression experiments at institute of fluid physics of CAEP [J]. The European Physical Journal Special Topics, 2012, 206(1): 163–172. doi: 10.1140/epjst/e2012-01597-y
|
[219] |
薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
XUE Q X, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
|
[220] |
SMITH R, ASAY J, COLLINS G. Laser driven quasi-isentropic compression experiments (ICE) for extracting EOS and phase transition information [C]//Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore, USA: American Physical Society, 2005.
|
[221] |
AMADOU N, BRAMBRINK E, BENUZZI-MOUNAIX A, et al. Laser-driven quasi-isentropic compression experiments and numerical studies of the iron alpha-epsilon transition in the context of planetology [J]. AIP Conference Proceedings, 2012, 1426(1): 1525–1528. doi: 10.1063/1.3686573
|
[222] |
种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验 [J]. 高压物理学报, 2018, 32(5): 051101. doi: 10.11858/gywlxb.20180511
CHONG T, TAN F L, WANG G J, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051101. doi: 10.11858/gywlxb.20180511
|
[223] |
种涛. 斜波加载下铋、锡等典型金属材料的相变动力学研究 [D]. 合肥: 中国科学技术大学, 2018.
CHONG T. Study on kinetics of phase transition of metal under ramp wave loading [D]. Hefei: University of Science and Technology of China, 2018.
|
[224] |
种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学, 2014, 44(6): 630–636. doi: 10.1360/132013-378
CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica, 2014, 44(6): 630–636. doi: 10.1360/132013-378
|
[225] |
DAVIAU K, LEE K K M. Decomposition of silicon carbide at high pressures and temperatures [J]. Physical Review B, 2017, 96(17): 174102. doi: 10.1103/PhysRevB.96.174102
|