Citation: | ZHANG Haiguang, WANG Yu, AN Lianhao, WANG Ke, WU Xiaodong. Experimental Study and Numerical Simulation of Dynamic Fracture Behavior of Branch Staggered Laminated Biomimetic Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014101. doi: 10.11858/gywlxb.20210776 |
[1] |
邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征 [J]. 复合材料学报, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001
SHAO H B, ZHU J, ZHOU Q, et al. Characteristics of microstructure and size change of the shell of Hyriopsis cumingii [J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2398–2406. doi: 10.13801/j.cnki.fhclxb.20190301.001
|
[2] |
王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(8): 98–102.
WANG Z X, YUAN M N, LI L Z, et al. Research progress of toughening mechanisms of nacre shell [J]. Materials Reports, 2015, 29(8): 98–102.
|
[3] |
SHIN Y A, YIN S, LI X, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nature Communications, 2016, 7: 10772. doi: 10.1038/ncomms10772
|
[4] |
MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties [J]. Progress in Materials Science, 2008, 53(1): 1–206. doi: 10.1016/j.pmatsci.2007.05.002
|
[5] |
白明敏, 李伟信, 洪毓鸿, 等. 仿贝壳正六边形Al2O3/环氧树脂层状复合材料的制备与表征 [J]. 陶瓷学报, 2019, 40(1): 80–86.
BAI M M, LI W X, HONG Y H, et al. Preparation and characterization of shell-like hexagonal Al2O3/epoxy resin laminated composites [J]. Journal of Ceramics, 2019, 40(1): 80–86.
|
[6] |
吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比 [J]. 高压物理学报, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
WU H C, XIAO Y H. Comparison of impact damage between ceramic structure and nacre-like ceramic/polyurea composite structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
|
[7] |
平冠群, 史金飞, 高海涛, 等. 基于AFM的仿生贝壳增材制造模型表达 [J]. 现代制造技术与装备, 2020(9): 14–16.
PING G Q, SHI J F, GAO H T, et al. AFM based modeling of bionic shell additive manufacturing [J]. Modern Manufacturing Technology and Equipment, 2020(9): 14–16.
|
[8] |
杨森, 靳丽, 董杰, 等. 金属基仿生贝壳材料的制备方法 [J]. 中南大学学报(自然科学版), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023
YANG S, JIN L, DONG J, et al. Methods for preparing metal-based nacre-inspired composites [J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3199–3210. doi: 10.11817/j.issn.1672-7207.2020.11.023
|
[9] |
马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734.
MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734.
|
[10] |
DIMAS L S, BRATZEL G H, EYLON I, et al. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing [J]. Advanced Functional Materials, 2013, 23(36): 4629–4638. doi: 10.1002/adfm.201300215
|
[11] |
陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究 [J]. 航天器环境工程, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008
CHEN H Y, YIN S, HU J X, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft [J]. Spacecraft Environment Engineering, 2019, 36(2): 151–155. doi: 10.12126/see.2019.02.008
|
[12] |
黄玉松, 郑威, 辛培训, 等. 贝壳珍珠层结构仿生复合材料研究 [J]. 工程塑料应用, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006
HUANG Y S, ZHENG W, XIN P X, et al. Study on conch nacre structure bio-inspired composites [J]. Engineering Plastics Application, 2008, 36(10): 21–25. doi: 10.3969/j.issn.1001-3539.2008.10.006
|
[13] |
ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: design, modeling, and test [J]. Journal of the Mechanics & Physics of Solids, 2015, 83: 285–300.
|
[14] |
GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. doi: 10.1002/adma.201700060
|
[15] |
JIA Z, YANG Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. doi: 10.1016/j.jmps.2018.12.015
|
[16] |
郭历伦, 钟卫洲, 陈忠富, 等. 冲击载荷下镁铝合金裂纹动态扩展过程的数值模拟 [J]. 爆炸与冲击, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07
GUO L L, ZHONG W Z, CHEN Z F, et al. Numerical research on dynamic fracture process of magnalium alloy under impact load [J]. Explosion and Shock Waves, 2016, 36(5): 648–654. doi: 10.11883/1001-1455(2016)05-0648-07
|
[17] |
JIANG F C, LIU R T, ZHANG X X, et al. Evaluation of dynamic fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test [J]. Engineering Fracture Mechanics, 2004, 71(3): 279–287. doi: 10.1016/S0013-7944(03)00139-5
|
[18] |
卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 227−247.
LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013: 227−247.
|
[19] |
WU X D, MENG X S, ZHANG H G. An experimental investigation of the dynamic fracture behavior of 3D printed nacre-like composites [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104068. doi: 10.1016/j.jmbbm.2020.104068
|
[20] |
孟祥生, 武晓东, 张海广. 3D打印浆砌层合结构复合材料层间断裂韧性的数值模拟 [J]. 高压物理学报, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
MENG X S, WU X D, ZHANG H G. Numerical simulation on interlaminar fracture toughness of 3D printed mortar laminated composites [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827
|
[21] |
GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance [J]. Extreme Mechanics Letters, 2016, 9: 317–323. doi: 10.1016/j.eml.2016.09.006
|