Citation: | XU Haitao, QIU Ji, XIAO Gesheng, YAO Yongyong, SHU Xuefeng. Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773 |
[1] |
叶均蔚, 陈瑞凯. 高熵合金 [J]. 科学发展, 2004(5): 16–21.
YE J W, CHEN R K. High-entropy alloys [J]. Science Development, 2004(5): 16–21.
|
[2] |
FANG S S, XIAO X S, XIA L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2003, 321(1/2): 120–125. doi: 10.1016/S0022-3093(03)00155-8
|
[3] |
GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. doi: 10.1126/SCIENCE.1254581
|
[4] |
HE F, WANG Z J, WU Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scripta Materialia, 2017, 126: 15–19. doi: 10.1016/j.scriptamat.2016.08.008
|
[5] |
LIU W H, WU Y, HE J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scripta Materialia, 2013, 68(7): 526–529. doi: 10.1016/j.scriptamat.2012.12.002
|
[6] |
LU Z P, WANG H, CHEN M W, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop [J]. Intermetallics, 2015, 66: 67–76. doi: 10.1016/j.intermet.2015.06.021
|
[7] |
张泰华. 微/纳米力学测试技术及其应用 [M]. 北京: 机械工业出版社, 2005.
ZHANG T H. Test technology and applications of micro/nano-mechanics [M]. Beijing: China Machine Press, 2005.
|
[8] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
|
[9] |
PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613–617. doi: 10.1557/JMR.1992.0613
|
[10] |
PETHICA J B, OLIVER W C. Tip surface interactions in STM and AFM [J]. Physica Scripta, 1987, 1987(T19A): 61–66.
|
[11] |
NIX W D, GAO H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. doi: 10.1016/S0022-5096(97)00086-0
|
[12] |
DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. doi: 10.1016/j.matchar.2015.11.018
|
[13] |
PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. doi: 10.1016/j.msea.2018.02.031
|
[14] |
蔡珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010.
CAI X. Fundamentals of materials science and engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
|