Citation: | XU Haitao, QIU Ji, XIAO Gesheng, YAO Yongyong, SHU Xuefeng. Effect of Dynamic Pre-Compression on Micro-Scale Indentation Hardness of CoCrFeNiMn High-Entropy Alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064101. doi: 10.11858/gywlxb.20210773 |
[1] |
叶均蔚, 陈瑞凯. 高熵合金 [J]. 科学发展, 2004(5): 16–21.
YE J W, CHEN R K. High-entropy alloys [J]. Science Development, 2004(5): 16–21.
|
[2] |
FANG S S, XIAO X S, XIA L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2003, 321(1/2): 120–125. doi: 10.1016/S0022-3093(03)00155-8
|
[3] |
GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. doi: 10.1126/SCIENCE.1254581
|
[4] |
HE F, WANG Z J, WU Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scripta Materialia, 2017, 126: 15–19. doi: 10.1016/j.scriptamat.2016.08.008
|
[5] |
LIU W H, WU Y, HE J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scripta Materialia, 2013, 68(7): 526–529. doi: 10.1016/j.scriptamat.2012.12.002
|
[6] |
LU Z P, WANG H, CHEN M W, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop [J]. Intermetallics, 2015, 66: 67–76. doi: 10.1016/j.intermet.2015.06.021
|
[7] |
张泰华. 微/纳米力学测试技术及其应用 [M]. 北京: 机械工业出版社, 2005.
ZHANG T H. Test technology and applications of micro/nano-mechanics [M]. Beijing: China Machine Press, 2005.
|
[8] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
|
[9] |
PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613–617. doi: 10.1557/JMR.1992.0613
|
[10] |
PETHICA J B, OLIVER W C. Tip surface interactions in STM and AFM [J]. Physica Scripta, 1987, 1987(T19A): 61–66.
|
[11] |
NIX W D, GAO H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. doi: 10.1016/S0022-5096(97)00086-0
|
[12] |
DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. doi: 10.1016/j.matchar.2015.11.018
|
[13] |
PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. doi: 10.1016/j.msea.2018.02.031
|
[14] |
蔡珣. 材料科学与工程基础 [M]. 上海: 上海交通大学出版社, 2010.
CAI X. Fundamentals of materials science and engineering [M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
|
[1] | CUI Kaijie, WANG Jiangang, WANG Hefeng, XING Xuegang, XIAO Gesheng, JIA Yiwei. Preparation, Microstructure and Mechanical Properties of Mo and Cocrfenimn High Entropy Alloy Hard Coating Layer[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240966 |
[2] | WU Kunkun, LIU Cong, SU Buyun, QIU Ji, SHU Xuefeng, KANG Zhengdong. Indentation Behavior of CoCrFeNiMn High-Entropy Alloys under Dynamic Loads[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 044202. doi: 10.11858/gywlxb.20251002 |
[4] | GUO Zihan, CHEN Chuang, TU Yiliang, TANG Enling. Quantitative Determination of Impact Reaction Energy Release for HfZrTiTaNb Based High-Entropy Alloys[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014103. doi: 10.11858/gywlxb.20230817 |
[5] | XIAO Likang, FENG Qiu, FANG Leiming, ZHOU Zhangyang, XIONG Zhengwei, LAN Jianghe, YANG Jia, LIU Yi, GAO Zhipeng. Acoustic and Elastic Properties of Polycrystalline Potassium Sodium Niobate under High Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 061101. doi: 10.11858/gywlxb.20230660 |
[6] | ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916 |
[7] | ZHANG Luming, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730 |
[8] | LI Jian, GUO Xiaoxuan, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlCrFeCuNi High Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011301. doi: 10.11858/gywlxb.20190762 |
[9] | LEI Huiru, ZHANG Lihong. Elastic Properties of ReN2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647 |
[10] | DU Ning, ZHANG Xianfeng, XIONG Wei, DING Li, WANG Jipeng, LIU Chuang. Experimental Study on the Penetration of Steel Fragments with Different Hardness into Q235A Steel Plate[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055102. doi: 10.11858/gywlxb.20180631 |
[11] | MIAO Run, WANG Weili, WU Shiyong, ZENG Liang, LIU Hongjie. Influence of Hole Size of Semi-Armor-Piercing Warhead on Ship's Cabin Implosion Effect[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065111. doi: 10.11858/gywlxb.20180547 |
[12] | LI Lei, ZHANG Xian-Feng, WU Xue, GAO Fei, LIU Chuang. Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239-248. doi: 10.11858/gywlxb.2017.03.005 |
[13] | ZHANG Yu, HE Duan-Wei, WANG Yong-Kun, LIU Yin-Juan, HU Yi, WANG Jiang-Hua. Reactive Sintering of B6O/TiB2 Composites at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 178-184. doi: 10.11858/gywlxb.2015.03.003 |
[14] | CHEN Hong-Yang, PENG Fang, LIU Ping-Ping, WANG Yong-Kun, DUAN Wen-Rui, LIU Dong-Qiong, YANG Xing-Hui, LI Chun-Xia, HE Duan-Wei. High-Pressure and High-Temperature Sintering of Bulk Tungsten and W-TiC Alloy with Near-Full Densification and High Hardness[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 255-262. doi: 10.11858/gywlxb.2015.04.003 |
[15] | ZHOU Nan, WANG Jin-Xiang, YANG Rui, XIE Jun. Anti-Penetration Performance of Double Hardness Target Impacted by a Spherical Projectile[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 564-570. doi: 10.11858/gywlxb.2014.05.009 |
[16] | HAN Lei, LIU Bao-Chang, LI Wen-Min, LIU Ying. Synthesis and Characterization of CrB2 by High Temperature and High Pressure Method[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 394-398. doi: 10.11858/gywlxb.2014.04.002 |
[17] | WANG Shao-Heng, YANG Zhen-Qi, GUAN Gong-Shun, PANG Bao-Jun, CHEN Hai-Bo. Dynamic Compression and Damage Pattern of Hollow Microsphere/Aluminum Alloy Composites[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 439-446. doi: 10.11858/gywlxb.2013.03.019 |
[18] | LI Xiao-Jie, WANG Zhan-Lei, YAN Hong-Hao, WANG Xiao-Hong, ZHANG Yue-Ju. Experimental Study on Explosive Compaction of W-Cu Nanocomposites[J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 368-372 . doi: 10.11858/gywlxb.2010.05.008 |
[19] | ZHUANG Shi-Ming, FENG Shu-Ping, WANG Chun-Yan, SUN Cheng-Wei. Dynamic Fracture of TC4 and TC9 Titanium Alloy under High Strain Rates[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 96-106 . doi: 10.11858/gywlxb.1995.02.003 |
[20] | LIU Xiao-Yang, SU Wen-Hui, MENG Chang-Gong, HU Zhuang-Qi. A New Criterion of Hardness for Materials with Rocksalt Structure[J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 241-247 . doi: 10.11858/gywlxb.1994.04.001 |