Volume 35 Issue 4
Aug 2021
Turn off MathJax
Article Contents
YU Jidong, YAO Songlin, WU Qiang. Advances of Phase Field Modeling of Martensitic Phase Transformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040109. doi: 10.11858/gywlxb.20210772
Citation: YU Jidong, YAO Songlin, WU Qiang. Advances of Phase Field Modeling of Martensitic Phase Transformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040109. doi: 10.11858/gywlxb.20210772

Advances of Phase Field Modeling of Martensitic Phase Transformation

doi: 10.11858/gywlxb.20210772
  • Received Date: 13 Apr 2021
  • Rev Recd Date: 21 May 2021
  • Martensitic transformation is a diffusionless, displacive and first-order phase transformation, which produces complex microstructures such as needle-like structure and surface tilting. Due to these microstructures having significantly influence on the macroscopic physical and mechanical properties, related studies have important scientific and engineering values. Phase field modeling has become a powerful theoretical and computational tool for simulating martensitic transformation because of its unique advantages to describe the complex interface evolution. In this study, the advances of phase field modeling of martensitic phase transformation was summarized, and the characteristics of the phase field modeling applied to the weak and reconstructive martensitic transformation were analyzed.

     

  • loading
  • [1]
    CHEN L Q. Phase-field models for microstructure evolution [J]. Annual Review of Materials Research, 2002, 32: 113–140. doi: 10.1146/annurev.matsci.32.112001.132041
    [2]
    LOGINOVA I S, SINGER H M. The phase field technique for modeling multiphase materials [J]. Reports on Progress in Physics, 2008, 71(10): 106501. doi: 10.1088/0034-4885/71/10/106501
    [3]
    EMMERICH H. Advances of and by phase-field modelling in condensed-matter physics [J]. Advances in Physics, 2008, 57(1): 1–87. doi: 10.1080/00018730701822522
    [4]
    STEINBACH I. Phase-field models in materials science [J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(7): 073001. doi: 10.1088/0965-0393/17/7/073001
    [5]
    WANG Y Z, LI J. Phase field modeling of defects and deformation [J]. Acta Materialia, 2010, 58(4): 1212–1235. doi: 10.1016/j.actamat.2009.10.041
    [6]
    BOETTINGER W J, WARREN J A, BECKERMANN C, et al. Phase-field simulation of solidification [J]. Annual Review of Materials Research, 2002, 32: 163–194. doi: 10.1146/annurev.matsci.32.101901.155803
    [7]
    WANG Y, KHACHATURYAN A G. Three-dimensional field model and computer modeling of martensitic transformations [J]. Acta Materialia, 1997, 45(2): 759–773. doi: 10.1016/S1359-6454(96)00180-2
    [8]
    WANG Y Z, KHACHATURYAN A G. Multi-scale phase field approach to martensitic transformations [J]. Materials Science and Engineering: A, 2006, 438/439/440: 55–63. doi: 10.1016/j.msea.2006.04.123
    [9]
    MAMIVAND M, ZAEEM M A, KADIRI H E. A review on phase field modeling of martensitic phase transformation [J]. Computational Materials Science, 2013, 77: 304–311. doi: 10.1016/j.commatsci.2013.04.059
    [10]
    DENG Y, GAMMER C, CISTON J, et al. Hierarchically-structured large superelastic deformation in ferroelastic-ferroelectrics [J]. Acta Materialia, 2019, 181: 501–509. doi: 10.1016/j.actamat.2019.10.018
    [11]
    CLAYTON J D, KNAP J. A phase field model of deformation twinning: nonlinear theory and numerical simulations [J]. Physica D: Nonlinear Phenomena, 2011, 240(9/10): 841–858. doi: 10.1016/j.physd.2010.12.012
    [12]
    LIU G S, MO H X, WANG J, et al. Coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning mechanism for hexagonal metals [J]. Acta Materialia, 2021, 202: 399–416. doi: 10.1016/j.actamat.2020.11.002
    [13]
    WANG L Y, LIU Z L, ZHUANG Z. Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures [J]. International Journal of Plasticity, 2016, 81: 267–283. doi: 10.1016/j.ijplas.2016.01.010
    [14]
    ALBRECHT C, HUNTER A, KUMAR A, et al. A phase field model for dislocations in hexagonal close packed crystals [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103823. doi: 10.1016/j.jmps.2019.103823
    [15]
    BOURDIN B, FRANCFORT G A, MARIGO J J. The variational approach to fracture [M]. Berlin: Springer Verlag, 2008.
    [16]
    MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/46/47/48): 2765–2778. doi: 10.1016/j.cma.2010.04.011
    [17]
    REZAEI S, MIANROODI J R, BREPOLS T, et al. Direction-dependent fracture in solids: atomistically calibrated phase-field and cohesive zone model [J]. Journal of the Mechanics and Physics of Solids, 2021, 147: 104253. doi: 10.1016/j.jmps.2020.104253
    [18]
    WANG T, YE X, LIU Z L, et al. Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method [J]. Computational Mechanics, 2019, 64(6): 1537–1556. doi: 10.1007/s00466-019-01733-z
    [19]
    WANG T, YE X, LIU Z L, et al. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration [J]. Computational Mechanics, 2020, 65(5): 1305–1321. doi: 10.1007/s00466-020-01820-6
    [20]
    BALL J M, JAMES R D. Fine phase mixtures as minimizers of energy [J]. Archive for Rational Mechanics and Analysis, 1987, 100(1): 13–52. doi: 10.1007/BF00281246
    [21]
    BALL J M, JAMES R D. Proposed experimental tests of a theory of fine microstructure and the two-well problem [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1992, 338(1650): 389–450. doi: 10.1098/rsta.1992.0013
    [22]
    KOHN R V. The relaxation of a double-well energy [J]. Continuum Mechanics and Thermodynamics, 1991, 3(3): 193–236. doi: 10.1007/BF01135336
    [23]
    BHATTACHARYA K. Microstructure of martensite [M]. Oxford: Oxford University Press, 2004.
    [24]
    唐志平. 冲击相变[M]. 北京: 科学出版社, 2008: 87.
    [25]
    WEN Y H, WANG Y, BENDERSKY L A, et al. Microstructural evolution during the α2α2 + O transformation in Ti-Al-Nb alloys: phase-field simulation and experimental validation [J]. Acta Materialia, 2000, 48(16): 4125–4135. doi: 10.1016/S1359-6454(00)00186-5
    [26]
    ARTEMEV A, JIN Y, KHACHATURYAN A G. Three-dimensional phase field model of proper martensitic transformation [J]. Acta Materialia, 2001, 49(7): 1165–1177. doi: 10.1016/S1359-6454(01)00021-0
    [27]
    RAO W F, KHACHATURYAN A G. Phase field theory of proper displacive phase transformations: structural anisotropy and directional flexibility, a vector model, and the transformation kinetics [J]. Acta Materialia, 2011, 59(11): 4494–4503. doi: 10.1016/j.actamat.2011.03.072
    [28]
    JAVANBAKHT M, ADAEI M. Investigating the effect of elastic anisotropy on martensitic phase transformations at the nanoscale [J]. Computational Materials Science, 2019, 167: 168–182. doi: 10.1016/j.commatsci.2019.05.047
    [29]
    XIE X, KANG G Z, KAN Q H, et al. Phase-field theory based finite element simulation on thermo-mechanical cyclic deformation of polycrystalline super-elastic NiTi shape memory alloy [J]. Computational Materials Science, 2020, 184: 109899. doi: 10.1016/j.commatsci.2020.109899
    [30]
    WANG D, LIANG Q L, ZHAO S S, et al. Phase field simulation of martensitic transformation in pre-strained nanocomposite shape memory alloys [J]. Acta Materialia, 2019, 164: 99–109. doi: 10.1016/j.actamat.2018.10.030
    [31]
    LEVITAS V I, LEVIN V A, ZINGERMAN K M, et al. Displacive phase transitions at large strains: phase-field theory and simulations [J]. Physical Review Letters, 2009, 103(2): 025702. doi: 10.1103/PhysRevLett.103.025702
    [32]
    VAN DER WAALS J D. The thermodynamic theory capillarity under the hypothesis of a continuous variation of density [J]. Verhandelingen van de Koninklijke Academie voor Wetenschappen, 1893, 1: 1–56.
    [33]
    GIBBS J W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces [J]. Transactions of the Connecticut Academy, 1873, 2: 382–404.
    [34]
    CAHN J W, HILLIARD J E. Free energy of a nonuniform system. I. interfacial free energy [J]. The Journal of Chemical Physics, 1957, 28(2): 258. doi: 10.1063/1.1744102
    [35]
    ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metallurgica, 1979, 27(6): 1085–1095. doi: 10.1016/0001-6160(79)90196-2
    [36]
    KOBAYASHI H, ODE M, KIM S G, et al. Phase-field model for solidification of ternary alloys coupled with thermodynamic database [J]. Scripta Materialia, 2003, 48(6): 689–694. doi: 10.1016/S1359-6462(02)00557-2
    [37]
    SEOL D J, HU S Y, LI Y L, et al. Computer simulation of spinodal decomposition in constrained films [J]. Acta Materialia, 2003, 51(17): 5173–5185. doi: 10.1016/S1359-6454(03)00378-1
    [38]
    WANG Y, JIN Y M, CUITIÑO A M, et al. Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations [J]. Acta Materialia, 2001, 49(10): 1847–1857. doi: 10.1016/S1359-6454(01)00075-1
    [39]
    CAHN J W, HAN S C, MCFADDEN G B. Anisotropy of interfaces in an ordered hcp binary alloy [J]. Journal of Statistical Physics, 1999, 95(5/6): 1337–1360. doi: 10.1023/A:1004583324097
    [40]
    OGATA S, LI J, YIP S. Ideal pure shear strength of aluminum and copper [J]. Science, 2002, 298(5594): 807–811. doi: 10.1126/science.1076652
    [41]
    OGATA S, LI J, YIP S. Energy landscape of deformation twinning in bcc and fcc metals [J]. Physical Review B, 2005, 71(22): 224102. doi: 10.1103/PhysRevB.71.224102
    [42]
    SHEN C, LI J, WANG Y Z. Finding critical nucleus in solid-state transformations [J]. Metallurgical and Materials Transactions A, 2008, 39(5): 976–983. doi: 10.1007/s11661-007-9302-7
    [43]
    KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics [J]. Physical Review E, 1996, 53(4): R3017. doi: 10.1103/PhysRevE.53.R3017
    [44]
    KARMA A, RAPPEL W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Physical Review E, 1998, 57(4): 4323–4349. doi: 10.1103/PhysRevE.57.4323
    [45]
    FINEL A, BOUAR Y L, DABAS B, et al. Sharp phase field method [J]. Physical Review Letters, 2018, 121(2): 025501. doi: 10.1103/PhysRevLett.121.025501
    [46]
    PROVATAS N, GOLDENFELD N, DANTZIG J. Efficient computation of dendritic microstructures using adaptive mesh refinement [J]. Physical Review Letters, 1998, 80(15): 3308–3311. doi: 10.1103/PhysRevLett.80.3308
    [47]
    JEONG D, KIM J. Fast and accurate adaptive finite difference method for dendritic growth [J]. Computer Physics Communications, 2019, 236: 95–103. doi: 10.1016/j.cpc.2018.10.020
    [48]
    LEVITAS V I, IDESMAN A V, PRESTON D L. Microscale simulation of martensitic microstructure evolution [J]. Physical Review Letters, 2004, 93(10): 105701. doi: 10.1103/PhysRevLett.93.105701
    [49]
    STEINBACH I, APEL M. Multi phase field model for solid state transformation with elastic strain [J]. Physica D: Nonlinear Phenomena, 2006, 217(2): 153–160. doi: 10.1016/j.physd.2006.04.001
    [50]
    LEVITAS V I, ESFAHANI S E, GHAMARIAN I. Scale-free modeling of coupled evolution of discrete dislocation bands and multivariant martensitic microstructure [J]. Physical Review Letters, 2018, 121(20): 205701. doi: 10.1103/PhysRevLett.121.205701
    [51]
    ABBOUD H, KOSSEIFI C A, CHEHAB J P. A stabilized bi-grid method for Allen-Cahn equation in finite elements [J]. Computational and Applied Mathematics, 2019, 38(2): 35. doi: 10.1007/S40314-019-0781-0
    [52]
    徐祖耀. 材料相变[M]. 北京: 高等教育出版社, 2013: 352.
    [53]
    BHATTACHARYA K, CONTI S, ZANZOTTO G, et al. Crystal symmetry and the reversibility of martensitic transformations [J]. Nature, 2004, 428(6978): 55–59. doi: 10.1038/nature02378
    [54]
    SOEJIMA Y, MOTOMURA S, MITSUHARA M, et al. In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti-Ni shape memory alloy [J]. Acta Materialia, 2016, 103: 352–360. doi: 10.1016/j.actamat.2015.10.017
    [55]
    WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. doi: 10.1038/srep01086
    [56]
    FALK F. One-dimensional model of shape memory alloys [J]. Archives of Mechanics, 1983, 35(1): 63–84.
    [57]
    FALK F, KONOPKA P. Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys [J]. Journal of Physics: Condensed Matter, 1990, 2(1): 61–77. doi: 10.1088/0953-8984/2/1/005
    [58]
    JACOBS A E, CURNOE S H, DESAI R C. Simulations of cubic-tetragonal ferroelastics [J]. Physical Review B, 2003, 68(22): 224104. doi: 10.1103/PhysRevB.68.224104
    [59]
    CAHN J W, KALONJI G. Symmetry in solid state transformation morphology [M]. Warrendale, USA, 1981.
    [60]
    VEDANTAM S, ABEYARATNE R. A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy [J]. International Journal of Non-Linear Mechanics, 2005, 40(2/3): 177–193. doi: 10.1016/j.ijnonlinmec.2004.05.005
    [61]
    SHCHYGLO O, SALMAN U, FINEL A. Martensitic phase transformations in Ni-Ti-based shape memory alloys: the Landau theory [J]. Acta Materialia, 2012, 60(19): 6784–6792. doi: 10.1016/j.actamat.2012.08.056
    [62]
    LEVITAS V I, PRESTON D L. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. austenite ↔ martensite [J]. Physical Review B, 2002, 66(13): 134206. doi: 10.1103/PhysRevB.66.134206
    [63]
    LEVITAS V I, PRESTON D L. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. multivariant phase transformations and stress space analysis [J]. Physical Review B, 2002, 66(13): 134207. doi: 10.1103/PhysRevB.66.134207
    [64]
    SHE H, LIU Y L, WANG B. Phase field simulation of heterogeneous cubic→tetragonal martensite nucleation [J]. International Journal of Solids and Structures, 2013, 50(7/8): 1187–1191. doi: 10.1016/j.ijsolstr.2012.12.020
    [65]
    GOMEZ H, BURES M, MOURE A. A review on computational modelling of phase-transition problems [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2143): 20180203. doi: 10.1098/RSTA.2018.0203
    [66]
    WEN Y H, WANG Y, CHEN L Q. Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation [J]. Acta Materialia, 1999, 47(17): 4375–4386. doi: 10.1016/S1359-6454(99)00247-5
    [67]
    WEN Y H, WANG Y, CHEN L Q. Phase-field simulation of domain structure evolution during a coherent hexagonal-to-orthorhombic transformation [J]. Philosophical Magazine A, 2000, 80(9): 1967–1982. doi: 10.1080/01418610008212146
    [68]
    DEVILLE S, GUÉNIN G, CHEVALIER J. Martensitic transformation in zirconia: Part I. nanometer scale prediction and measurement of transformation induced relief [J]. Acta Materialia, 2004, 52(19): 5697–5707. doi: 10.1016/j.actamat.2004.08.034
    [69]
    BAIN E C. The nature of martensite [J]. Trans. AIME, 1924, 70: 25–46.
    [70]
    VATTRÉ A, DENOUAL C. Polymorphism of iron at high pressure: a 3D phase-field model for displacive transitions with finite elastoplastic deformations [J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 1–27. doi: 10.1016/J.JMPS.2016.01.016
    [71]
    DENOUAL C, CAUCCI A M, SOULARD L, et al. Phase-field reaction-pathway kinetics of martensitic transformations in a model Fe3Ni alloy [J]. Physical Review Letters, 2010, 105(3): 035703. doi: 10.1103/PhysRevLett.105.035703
    [72]
    DENOUAL C, VATTRÉ A. A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants [J]. Journal of the Mechanics and Physics of Solids, 2016, 90: 91–107. doi: 10.1016/j.jmps.2016.02.022
    [73]
    VATTRÉ A, DENOUAL C. Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 387–403. doi: 10.1016/j.jmps.2019.07.012
    [74]
    HOMAYONIFAR M, MOSLER J. Efficient modeling of microstructure evolution in magnesium by energy minimization [J]. International Journal of Plasticity, 2012, 28(1): 1–20. doi: 10.1016/j.ijplas.2011.05.011
    [75]
    CLAYTON J D. Nonlinear Eulerian thermoelasticity for anisotropic crystals [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(10): 1983–2014. doi: 10.1016/j.jmps.2013.05.009
    [76]
    OLSON G B, ROITBURD A L. Martensitic nucleation [M]//OLSON G B, OWEN W S. Martensite. Materials Park, Ohio: ASM International, 1992: 149.
    [77]
    HENNIG R G, TRINKLE D R, BOUCHET J, et al. Impurities block the α to ω martensitic transformation in titanium [J]. Nature Materials, 2005, 4(2): 129–133. doi: 10.1038/nmat1292
    [78]
    CASPERSEN K J, CARTER E A. Finding transition states for crystalline solid-solid phase transformations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6738–6743. doi: 10.1073/pnas.0408127102
    [79]
    DUPÉ B, AMADON B, PELLEGRINI Y P, et al. Mechanism for the αε phase transition in iron [J]. Physical Review B, 2013, 87(2): 024103. doi: 10.1103/PhysRevB.87.024103
    [80]
    BAKHTIARI S, LIU J Z, LIU Y N, et al. Monoclinic angle, shear response, and minimum energy pathways of NiTiCu martensite phases from ab initio calculations [J]. Acta Materialia, 2019, 178: 59–67. doi: 10.1016/j.actamat.2019.07.050
    [81]
    GAO Y P, SHI R P, NIE J F, et al. Group theory description of transformation pathway degeneracy in structural phase transformations [J]. Acta Materialia, 2016, 109: 353–363. doi: 10.1016/j.actamat.2016.01.027
    [82]
    GAO Y P, WANG Y Z. Hidden pathway during fcc to bcc/bct transformations: crystallographic origin of slip martensite in steels [J]. Physical Review Materials, 2018, 2(9): 093611. doi: 10.1103/PhysRevMaterials.2.093611
    [83]
    ZHANG T L, WANG D, WANG Y Z. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys [J]. Acta Materialia, 2020, 196: 409–417. doi: 10.1016/j.actamat.2020.06.048
    [84]
    GAO Y P. Symmetry and pathway analyses of the twinning modes in Ni-Ti shape memory alloys [J]. Materialia, 2019, 6: 100320. doi: 10.1016/j.mtla.2019.100320
    [85]
    GAO Y P, ZHENG Y F, FRASER H, et al. Intrinsic coupling between twinning plasticity and transformation plasticity in metastable β Ti-alloys: a symmetry and pathway analysis [J]. Acta Materialia, 2020, 196: 488–504. doi: 10.1016/j.actamat.2020.07.020
    [86]
    OLSON G B. Computational design of hierarchically structured materials [J]. Science, 1997, 277(5330): 1237–1242. doi: 10.1126/science.277.5330.1237
    [87]
    CISSÉ C, ZAEEM M A. A phase-field model for non-isothermal phase transformation and plasticity in polycrystalline yttria-stabilized tetragonal zirconia [J]. Acta Materialia, 2020, 191: 111–123. doi: 10.1016/j.actamat.2020.03.025
    [88]
    WEI S L, KIM J W, CANN J L, et al. Plastic strain-induced sequential martensitic transformation [J]. Scripta Materialia, 2020, 185: 36–41. doi: 10.1016/j.scriptamat.2020.03.060
    [89]
    LEVITAS V I. High pressure phase transformations revisited [J]. Journal of Physics: Condensed Matter, 2018, 30(16): 163001. doi: 10.1088/1361-648X/aab4b0
    [90]
    XU Y, MING P B, CHEN J. A phase field framework for dynamic adiabatic shear banding [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103810. doi: 10.1016/j.jmps.2019.103810
    [91]
    JAVANBAKHT M, LEVITAS V I. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear [J]. Physical Review B, 2016, 94(21): 214104. doi: 10.1103/PhysRevB.94.214104
    [92]
    GUO X H, SHI S Q, MA X Q. Elastoplastic phase field model for microstructure evolution [J]. Applied Physics Letters, 2005, 87(22): 221910. doi: 10.1063/1.2138358
    [93]
    PARANJAPE H M, MANCHIRAJU S, ANDERSON P M. A phase field-finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys [J]. International Journal of Plasticity, 2016, 80: 1–18. doi: 10.1016/j.ijplas.2015.12.007
    [94]
    KUNDIN J, RAABE D, EMMERICH H. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite [J]. Journal of the Mechanics and Physics of Solids, 2011, 59(10): 2082–2102. doi: 10.1016/j.jmps.2011.07.001
    [95]
    ESFAHANI S E, GHAMARIAN I, LEVITAS V I. Strain-induced multivariant martensitic transformations: a scale-independent simulation of interaction between localized shear bands and microstructure [J]. Acta Materialia, 2020, 196: 430–443. doi: 10.1016/j.actamat.2020.06.059
    [96]
    SCHMITT R, KUHN C, MÜLLER R, et al. Crystal plasticity and martensitic transformations: a phase field approach [J]. Technische Mechanik, 2014, 34(1): 23–38. doi: 10.24352/UB.OVGU-2017-051
    [97]
    ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152–1211. doi: 10.1016/j.actamat.2009.10.058
    [98]
    RICE J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity [J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433–455. doi: 10.1016/0022-5096(71)90010-X
    [99]
    MA A, ROTERS F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Materialia, 2004, 52(12): 3603–3612. doi: 10.1016/j.actamat.2004.04.012
    [100]
    YAO S L, YU J D, CUI Y N, et al. Revisiting the power law characteristics of the plastic shock front under shock loading [J]. Physical Review Letters, 2021, 126(8): 085503. doi: 10.1103/PhysRevLett.126.085503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(4139) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return