Volume 35 Issue 4
Aug 2021
Turn off MathJax
Article Contents
LÜ Chao, ZHANG Xuping, WANG Guiji, LUO Binqiang, LUO Ning, WU Heng’an, TAN Fuli, ZHAO Jianheng, LIU Cangli, SUN Chengwei. Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769
Citation: LÜ Chao, ZHANG Xuping, WANG Guiji, LUO Binqiang, LUO Ning, WU Heng’an, TAN Fuli, ZHAO Jianheng, LIU Cangli, SUN Chengwei. Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040107. doi: 10.11858/gywlxb.20210769

Micro-Scale Response Characteristics of Ni52Ti48 Alloy under Shock Loading

doi: 10.11858/gywlxb.20210769
  • Received Date: 11 Apr 2021
  • Rev Recd Date: 25 May 2021
  • Experiments and molecular dynamics simulations were carried out to understand the dynamic deformation behavior, microstructure evolution characteristics and mechanism of near equiatomic NiTi alloy at high pressures and high strain rates. In the experiments, the dynamic deformation characteristics of Ni52Ti48 alloy under shock compression and shock loading-unloading were studied by electromagnetically driven high-velocity flyer plate, momentum trapping and soft recovery experimental techniques based on high current pulse power device CQ-4. By means of X-ray diffraction and electron backscattered diffraction, the microstructure characteristics of Ni52Ti48 alloy were analyzed, the results show that there is no martensitic transformation in Ni52Ti48 alloy under shock compression and tension, and the main deformation mode is plastic deformation such as dislocation slip. Moreover, the microstructure evolution characteristics and deformation mechanism of Ni52Ti48 alloy under shock compression were studied by non-equilibrium molecular dynamics simulations, and the calculated results well reflect the microstructure characteristics observed in the experiment. Meanwhile, the spall strength of Ni52Ti48 alloy at different initial ambient temperatures was calculated, and the results show obvious unloading strain rate effect. The related work has deepened the understanding of the deformation behavior of Ni52Ti48 alloy at high pressures and high strain rates, and provided a reference for its safe service in extreme environment.

     

  • loading
  • [1]
    STACHIV I, ALARCON E, LAMAC M. Shape memory alloys and polymers for MEMS/NEMS applications: review on recent findings and challenges in design, preparation, and characterization [J]. Metals, 2021, 11(3): 415. doi: 10.3390/met11030415
    [2]
    ŠITTNER P, HELLER L, PILCH J, et al. Young’s modulus of austenite and martensite phases in superelastic NiTi wires [J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2303–2314. doi: 10.1007/s11665-014-0976-x
    [3]
    MORGAN N B. Medical shape memory alloy applications: the market and its products [J]. Materials Science and Engineering: A, 2004, 378(1/2): 16–23. doi: 10.1016/j.msea.2003.10.326
    [4]
    STOECKEL D. Shape memory actuators for automotive applications [J]. Materials & Design, 1990, 11(6): 302–307. doi: 10.1016/0261-3069(90)90013-A
    [5]
    BIL C, MASSEY K, ABDULLAH E J. Wing morphing control with shape memory alloy actuators [J]. Journal of Intelligent Material Systems and Structures, 2013, 24(7): 879–898. doi: 10.1177/1045389X12471866
    [6]
    FURUYA Y. Design and material evaluation of shape memory composites [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(3): 321–330. doi: 10.1177/1045389X9600700313
    [7]
    RAO A, SRINIVASA A R, REDDY J N. Design of shape memory alloy (SMA) actuators [M]. Cham: Springer, 2015.
    [8]
    CHAU E T F, FRIEND C M, ALLEN D M, et al. A technical and economic appraisal of shape memory alloys for aerospace applications [J]. Materials Science and Engineering: A, 2006, 438/439/440: 589–592. doi: 10.1016/j.msea.2006.02.201
    [9]
    ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. doi: 10.1016/j.jallcom.2017.10.080
    [10]
    CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. doi: 10.1016/S0020-7683(01)00165-2
    [11]
    NEMAT-NASSER S, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy [J]. Mechanics of Materials, 2005, 37(2/3): 287–298. doi: 10.1016/j.mechmat.2004.03.007
    [12]
    NEMAT-NASSER S, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. doi: 10.1115/1.1839215
    [13]
    GUO W G, SU J, SU Y, et al. On phase transition velocities of NiTi shape memory alloys [J]. Journal of Alloys and Compounds, 2010, 501(1): 70–76. doi: 10.1016/j.jallcom.2010.04.031
    [14]
    QIU Y, YOUNG M L, NIE X. High strain rate compression of martensitic NiTi shape memory alloys [J]. Shape Memory and Superelasticity, 2015, 1(3): 310–318. doi: 10.1007/s40830-015-0035-y
    [15]
    NNAMCHI P, YOUNES A, GONZÁLEZ S. A review on shape memory metallic alloys and their critical stress for twinning [J]. Intermetallics, 2019, 105: 61–78. doi: 10.1016/j.intermet.2018.11.005
    [16]
    YIN Q Y, WU X Q, HUANG C G. Atomistic study on shock behaviour of NiTi shape memory alloy [J]. Philosophical Magazine, 2017, 97(16): 1311–1333. doi: 10.1080/14786435.2017.1294769
    [17]
    ZHONG Y, GALL K, ZHU T. Atomistic study of nanotwins in NiTi shape memory alloys [J]. Journal of Applied Physics, 2011, 110(3): 033532. doi: 10.1063/1.3621429
    [18]
    YAZDANDOOST F, MIRZAEIFAR R. Stress wave and phase transformation propagation at the atomistic scale in NiTi shape memory alloys subjected to shock loadings [J]. Shape Memory and Superelasticity, 2018, 4(4): 435–449. doi: 10.1007/s40830-018-0189-5
    [19]
    WANG M, JIANG S Y, ZHANG Y Q. Phase transformation, twinning, and detwinning of NiTi shape-memory alloy subject to a shock wave based on molecular-dynamics simulation [J]. Materials, 2018, 11(11): 2334. doi: 10.3390/ma11112334
    [20]
    LV C, ZHANG X P, WANG G J, et al. Twinning and rotational deformation of nanocrystalline NiTi under shock loading [J]. Physical Review Materials, 2020, 4(9): 093607. doi: 10.1103/PhysRevMaterials.4.093607
    [21]
    ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. doi: 10.1063/1.4875705
    [22]
    WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [23]
    吕超. 冲击压缩/拉伸载荷下NiTi合金的微结构演化特性及其形成机制研究[D]. 绵阳: 中国工程物理研究院, 2019.
    [24]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [25]
    LAI W S, LIU B X. Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering [J]. Journal of Physics: Condensed Matter, 2000, 12(5): L53–L60. doi: 10.1088/0953-8984/12/5/101
    [26]
    WANG L, E J C, CAI Y, et al. Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction [J]. Journal of Applied Physics, 2015, 117(8): 084301. doi: 10.1063/1.4907672
    [27]
    E J C, TANG M X, FAN D, et al. Deformation of metals under dynamic loading: characterization via atomic-scale orientation mapping [J]. Computational Materials Science, 2018, 153: 338–347. doi: 10.1016/j.commatsci.2018.06.020
    [28]
    WANG L, ZHAO F, ZHAO F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. Journal of Applied Physics, 2014, 115(5): 053528. doi: 10.1063/1.4864427
    [29]
    LI S Z, DING X D, DENG J K, et al. Superelasticity in bcc nanowires by a reversible twinning mechanism [J]. Physical Review B, 2010, 82(20): 205435. doi: 10.1103/PhysRevB.82.205435
    [30]
    LUO H B, SHENG H W, ZHANG H L, et al. Plasticity without dislocations in a polycrystalline intermetallic [J]. Nature Communications, 2019, 10(1): 3587. doi: 10.1038/s41467-019-11505-1
    [31]
    OVID’KO I A, SHEINERMAN A G. Nanoscale rotational deformation in solids at high stresses [J]. Applied Physics Letters, 2011, 98(18): 181909. doi: 10.1063/1.3587637
    [32]
    LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views(3641) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return