LIU Depu, ZHANG Hengyuan, TAO Yu, JIA Xu, ZHANG Ruike, HE Duanwei, LEI Li. Synthesis of Platinum-Group Metal Nitride OsNx through High-Pressure Coupling Reaction[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251020
Citation: WANG Baoyun, XIAO Wansheng, SONG Maoshuang. Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765

Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH

doi: 10.11858/gywlxb.20210765
  • Received Date: 07 Apr 2021
  • Rev Recd Date: 25 Apr 2021
  • δ-(Al,Fe)OOH is regarded as a potential water carrier to core-mantle conditions, thus its high pressure structural behavior is important for understanding water circulation in the Earth’s interior. In this study, the compression behaviour of 8 mol.% Fe-bearing δ phase (δ-Fe8) is investigated using diamond anvil cell combined with synchrotron X-ray diffraction. The obtained pressure-volume (p-V) data show that δ-Fe8 experiences phase transitions from order to disorder of hydrogen and high spin to low spin of iron in the pressure range from ambient pressure to 78 GPa. The order to disorder transition of hydrogen takes place at 9.7 GPa characterized by the subtle kinks in the p-V profiles and the inversion of pressure dependence of a/c and b/c axial ratios, which accompany with a change in the crystallographic symmetry from P21nm to Pnnm. The isostructural iron spin crossover occurs between 31.5 and 39.5 GPa accompanied by 2% volume collapse. The compressional parameters are derived from fitting of p-V data using Birch-Murnaghan equation of state. The mixed-spin state of δ-Fe8 within the spin crossover region is treated as an ideal solid solution of the high spin and low spin state, then the fraction of low spin state is obtained by fitting experimental data. The calculated bulk moduli and bulk sound velocity soften across spin crossover, indicating that an accumulation of δ-Fe8 in middle part of lower mantle possibly leads to low bulk velocity anomalies. The linear relations between ferric content and structural transition pressure in δ-(Al,Fe)OOH are given with the combination of this study and previous results.

     

  • [1]
    OHTANI E. The role of water in Earth’s mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
    [2]
    WANG D J, MOOKHERJEE M, XU Y S, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256
    [3]
    王双杰, 易丽, 王多君, 等. 高温高压下花岗岩部分熔融时的电导率 [J]. 高压物理学报, 2020, 34(5): 051201. doi: 10.11858/gywlxb.20200502

    WANG S J, YI L, WANG D J, et al. Experimental conductivity of partial melt granite at high temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051201. doi: 10.11858/gywlxb.20200502
    [4]
    JACOBSEN S D. Effect of water on the equation of state of nominally anhydrous minerals [J]. Reviews in Mineralogy and Geochemistry, 2006, 62(1): 321–342. doi: 10.2138/rmg.2006.62.14
    [5]
    IWAMORI H. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O [J]. Earth and Planetary Science Letters, 2004, 227(1/2): 57–71. doi: 10.1016/j.jpgl.2004.08.013
    [6]
    LITASOV K, OHTANI E. Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa [J]. Physics and Chemistry of Minerals, 2003, 30(3): 147–156. doi: 10.1007/s00269-003-0301-y
    [7]
    SCHMIDT M W, POLI S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 361–379. doi: 10.1016/S0012-821X(98)00142-3
    [8]
    DUAN Y F, SUN N Y, WANG S H, et al. Phase stability and thermal equation of state of δ-AlOOH: implication for water transportation to the deep lower mantle [J]. Earth and Planetary Science Letters, 2018, 494: 92–98. doi: 10.1016/j.jpgl.2018.05.003
    [9]
    OHTANI E, LITASOV K, SUZUKI A, et al. Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep mantle [J]. Geophysical Research Letters, 2001, 28(20): 3991–3993. doi: 10.1029/2001GL013397
    [10]
    PIET H, LEINENWEBER K D, TAPPAN J, et al. Dehydration of δ-AlOOH in Earth’s deep lower mantle [J]. Minerals, 2020, 10(4): 384. doi: 10.3390/min10040384
    [11]
    SUZUKI A, OHTANI E, KAMADA T. A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 ℃ [J]. Physics and Chemistry of Minerals, 2000, 27(10): 689–693. doi: 10.1007/s002690000120
    [12]
    YOSHINO T, BAKER E, DUFFEY K. Fate of water in subducted hydrous sediments deduced from stability fields of FeOOH and AlOOH up to 20 GPa [J]. Physics of the Earth and Planetary Interiors, 2019, 294: 106295. doi: 10.1016/j.pepi.2019.106295
    [13]
    ZHANG L, SMYTH J R, KAWAZOE T, et al. Stability, composition, and crystal structure of Fe-bearing phase E in the transition zone [J]. American Mineralogist, 2019, 104(11): 1620–1624. doi: 10.2138/am-2019-6750
    [14]
    FUKUYAMA K, OHTANI E, SHIBAZAKI Y, et al. Stability field of phase Egg, AlSiO3OH at high pressure and high temperature: possible water reservoir in mantle transition zone [J]. Journal of Mineralogical and Petrological Sciences, 2017, 112(1): 31–35. doi: 10.2465/jmps.160719e
    [15]
    LIU X C, MATSUKAGE K N, NISHIHARA Y, et al. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust [J]. American Mineralogist, 2019, 104(1): 64–72. doi: 10.2138/am-2019-6559
    [16]
    WIRTH R, VOLLMER C, BRENKER F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil) [J]. Earth and Planetary Science Letters, 2007, 259(3/4): 384–399. doi: 10.1016/j.jpgl.2007.04.041
    [17]
    OHIRA I, OHTANI E, SAKAI T, et al. Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle [J]. Earth and Planetary Science Letters, 2014, 401: 12–17. doi: 10.1016/j.jpgl.2014.05.059
    [18]
    CHEN H, LEINENWEBER K, PRAKAPENKA V, et al. Possible H2O storage in the crystal structure of CaSiO3 perovskite [J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106412. doi: 10.1016/j.pepi.2019.106412
    [19]
    KOMATSU K, KURIBAYASHI T, SANO A, et al. Redetermination of the high-pressure modification of AlOOH from single-crystal synchrotron data [J]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62(11): i216–i218. doi: 10.1107/S160053680603916X
    [20]
    KURIBAYASHI T, SANO-FURUKAWA A, NAGASE T. Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method [J]. Physics and Chemistry of Minerals, 2014, 41(4): 303–312. doi: 10.1007/s00269-013-0649-6
    [21]
    SANO-FURUKAWA A, KAGI H, NAGAI T, et al. Change in compressibility of δ-AlOOH and δ-AlOOD at high pressure: a study of isotope effect and hydrogen-bond symmetrization [J]. American Mineralogist, 2009, 94(8/9): 1255–1261. doi: 10.2138/am.2009.3109
    [22]
    SIMONOVA D, BYKOVA E, BYKOV M, et al. Structural study of δ-AlOOH up to 29 GPa [J]. Minerals, 2020, 10(12): 1055. doi: 10.3390/min10121055
    [23]
    MASHINO I, MURAKAMI M, OHTANI E. Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 595–609. doi: 10.1002/2015JB012477
    [24]
    KAGI H, USHIJIMA D, SANO-FURUKAWA A, et al. Infrared absorption spectra of δ-AlOOH and its deuteride at high pressure and implication to pressure response of the hydrogen bonds [J]. Journal of Physics: Conference Series, 2010, 215: 012052. doi: 10.1088/1742-6596/215/1/012052
    [25]
    SANO-FURUKAWA A, HATTORI T, KOMATSU K, et al. Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction [J]. Scientific Reports, 2018, 8(1): 15520. doi: 10.1038/S41598-018-33598-2
    [26]
    CEDILLO A, TORRENT M, CORTONA P. Stability of the different AlOOH phases under pressure [J]. Journal of Physics: Condensed Matter, 2016, 28(18): 185401. doi: 10.1088/0953-8984/28/18/185401
    [27]
    CORTONA P. Hydrogen bond symmetrization and elastic constants under pressure of δ-AlOOH [J]. Journal of Physics: Condensed Matter, 2017, 29(32): 325505. doi: 10.1088/1361-648X/aa791f
    [28]
    LI S, AHUJA R, JOHANSSON B. The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH [J]. Solid State Communications, 2006, 137(1/2): 101–106. doi: 10.1016/j.ssc.2005.08.031
    [29]
    PILLAI S B, JHA P K, PADMALAL A, et al. First principles study of hydrogen bond symmetrization in δ-AlOOH [J]. Journal of Applied Physics, 2018, 123(11): 115901. doi: 10.1063/1.5019586
    [30]
    TSUCHIYA J, TSUCHIYA T. Elastic properties of δ-AlOOH under pressure: first principles investigation [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 122–127. doi: 10.1016/j.pepi.2009.01.008
    [31]
    TSUCHIYA J, TSUCHIYA T, WENTZCOVITCH R M. Vibrational properties of δ-AlOOH under pressure [J]. American Mineralogist, 2008, 93(2/3): 477–482. doi: 10.2138/am.2008.2627
    [32]
    BRONSTEIN Y, DEPONDT P, FINOCCHI F. Thermal and nuclear quantum effects in the hydrogen bond dynamical symmetrization phase transition of δ-AlOOH [J]. European Journal of Mineralogy, 2017, 29(3): 385–395. doi: 10.1127/ejm/2017/0029-2628
    [33]
    KANG D, FENG Y X, YUAN Y, et al. Hydrogen-bond symmetrization of δ-AlOOH [J]. Chinese Physics Letters, 2017, 34(10): 108301. doi: 10.1088/0256-307X/34/10/108301
    [34]
    XU C W, NISHI M, INOUE T. Solubility behavior of δ-AlOOH and ε-FeOOH at high pressures [J]. American Mineralogist, 2019, 104(10): 1416–1420. doi: 10.2138/am-2019-7064
    [35]
    GLEASON A E, JEANLOZ R, KUNZ M. Pressure-temperature stability studies of FeOOH using X-ray diffraction [J]. American Mineralogist, 2008, 93(11/12): 1882–1885. doi: 10.2138/am.2008.2942
    [36]
    THOMPSON E C, DAVIS A H, BRAUSER N M, et al. Phase transitions in ε-FeOOH at high pressure and ambient temperature [J]. American Mineralogist, 2020, 105(12): 1769–1777. doi: 10.2138/am-2020-7468
    [37]
    NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
    [38]
    HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [39]
    HOU M Q, HE Y, JANG B G, et al. Superionic iron oxide-hydroxide in Earth’s deep mantle [J]. Nature Geoscience, 2021, 14(3): 174–178. doi: 10.1038/s41561-021-00696-2
    [40]
    YUAN H S, ZHANG L, OHTANI E, et al. Stability of Fe-bearing hydrous phases and element partitioning in the system MgO-Al2O3-Fe2O3-SiO2-H2O in Earth’s lowermost mantle [J]. Earth and Planetary Science Letters, 2019, 524: 115714. doi: 10.1016/j.jpgl.2019.115714
    [41]
    OHIRA I, JACKSON J M, SOLOMATOVA N V, et al. Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressures [J]. American Mineralogist, 2019, 104(9): 1273–1284. doi: 10.2138/am-2019-6913
    [42]
    HSIEH W P, ISHII T, CHAO K H, et al. Spin transition of iron in δ-(Al,Fe)OOH induces thermal anomalies in Earth’s lower mantle [J]. Geophysical Research Letters, 2020, 47(4): e2020GL087036. doi: 10.1029/2020GL087036
    [43]
    SU X W, ZHAO C S, LV C J, et al. The effect of iron on the sound velocities of δ-AlOOH up to 135 GPa [J]. Geoscience Frontiers, 2021, 12(2): 937–946. doi: 10.1016/j.gsf.2020.08.012
    [44]
    KAWAZOE T, OHIRA I, ISHII T, et al. Single crystal synthesis of δ-(Al,Fe)OOH [J]. American Mineralogist, 2017, 102(9): 1953–1956. doi: 10.2138/am-2017-6153
    [45]
    FEI Y W, RICOLLEAU A, FRANK M, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104
    [46]
    MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [47]
    PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223–230. doi: 10.1080/08957959.2015.1059835
    [48]
    HOLLAND T J B, REDFERN S A T. Unitcell: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics [J]. Journal of Applied Crystallography, 1997, 30(1): 84. doi: 10.1107/S0021889896011673
    [49]
    ANGEL R J, ALVARO M, GONZALEZ-PLATAS J. EosFit7c and a Fortran module (library) for equation of state calculations [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229(5): 405–419. doi: 10.1515/zkri-2013-1711
    [50]
    BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
    [51]
    WU Y, WU X, LIN J F, et al. Spin transition of ferric iron in the NAL phase: implications for the seismic heterogeneities of subducted slabs in the lower mantle [J]. Earth and Planetary Science Letters, 2016, 434: 91–100. doi: 10.1016/j.jpgl.2015.11.011
    [52]
    WENTZCOVITCH R M, JUSTO J F, WU Z, et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8447–8452. doi: 10.1073/pnas.0812150106
    [53]
    BALLARAN T B, KURNOSOV A, GLAZYRIN K, et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 181–190. doi: 10.1016/j.jpgl.2012.03.029
    [54]
    LI L, WEIDNER D J, BRODHOLT J, et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2006, 155(3/4): 249–259. doi: 10.1016/j.pepi.2005.12.006
    [55]
    SOLOMATOVA N V, JACKSON J M, STURHAHN W, et al. Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary [J]. American Mineralogist, 2016, 101(5): 1084–1093. doi: 10.2138/am-2016-5510
    [56]
    ANDRAULT D, ANGEL R J, MOSENFELDER J L, et al. Equation of state of stishovite to lower mantle pressures [J]. American Mineralogist, 2003, 88(2/3): 301–307. doi: 10.2138/am-2003-2-307
    [57]
    CASTLE J C, VAN DER HILST R D. Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2095. doi: 10.1029/2001JB000286
    [58]
    VANACORE E, NIU F L, KAWAKATSU H. Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms [J]. Geophysical Research Letters, 2006, 33(4): L04302. doi: 10.1029/2005GL025106
    [59]
    KANESHIMA S, HELFFRICH G. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area [J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 91–103. doi: 10.1016/j.pepi.2010.03.011
  • Relative Articles

    [1]LONG Haidong, CHEN Jie, XIAO Xiong, PENG Fang. High-Temperature and High-Pressure Synthesis of High-Entropy Transition Metal Diborides[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 063101. doi: 10.11858/gywlxb.20240790
    [2]HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
    [3]WANG Yao, MA Hong’an, YANG Zhiqiang, DING Luyao, WANG Zhanke, JIA Xiaopeng. Effects of {100} Seed Crystal Surface with Different Shape on the HPHT Synthetic Large Single Crystal Diamonds[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043301. doi: 10.11858/gywlxb.20190708
    [4]LEI Li, PU Meifang, FENG Leihao, QI Lei, ZHANG Leilei. Synthesis of Cubic Gauche Nitrogen (cg-N) under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672
    [5]HAN Jing-Jing, HE Duan-Wei, MA Ying-Gong, DING Wei, GOU Li, TANG Yong-Jian. Synthesis of Diamond-Like Carbon Spheres under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 215-222. doi: 10.11858/gywlxb.2017.03.002
    [6]GAO Shang-Pan, LEI Li, HU Qi-Wei, FANG Lei-Ming, WANG Xian-Long, OHFUJI Hiroaki, KOJIMA Yohei, ZHANG Lei-Lei, TAN Li-Jie, ZENG Zhi, PENG Fang, HE Duan-Wei, IRIFUNE Tetsuo. High-Pressure Solid-State Metathesis Synthesis ofTernary Iron-Based Metal Nitrides[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265-270. doi: 10.11858/gywlxb.2016.04.001
    [7]LIU Lei, ZHANG Yuan-Pei, WANG Feng, CHEN Chong, LI Mu-Sen. Acoustic Emission Dynamic Characteristics of Growth Process of Diamond Single Crystals under HPHT[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 409-414 . doi: 10.11858/gywlxb.2010.06.002
    [8]XU Bin, LI Li, TIAN Bin, FAN Xiao-Hong, FENG Li-Ming. Thermodynamic Analysis of Diamond Growth with Catalyst at HPHT[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 189-195 . doi: 10.11858/gywlxb.2009.03.005
    [9]LI He-Sheng, LI Mu-Sen. Study on Synthesizing Diamond from Fe-Ni-C System at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 401-408 . doi: 10.11858/gywlxb.2007.04.012
    [10]LI Li, XU Bin, GONG Jian-Hong, LI Mu-Sen. Valence Electron Structure Analysis of Catalyst during Diamond Synthesis under HPHT[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 372-378 . doi: 10.11858/gywlxb.2006.04.006
    [11]LUO Xiang-Jie, LUO Bo-Cheng, PENG Fang, CHEN Hao, DING Li-Ye. Analysis of Graphite-Hexagonal Boron Nitride (g-hBN) Micro-Crystal Mixture Treated under High-Pressure and High-Temperature[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 359-363 . doi: 10.11858/gywlxb.2004.04.012
    [12]LUO Xiang-Jie, PENG Fang, CHEN Hao, BI Yan, LUO Bo-Cheng, DING Li-Ye. Analysis of Reaction Products of Micro-Crystal Mixture of Graphite Hexagonal Boron Nitride with Water under the High-Temperature and High-Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 106-110 . doi: 10.11858/gywlxb.2003.02.005
    [13]HONG Rui-Jin, MA Xian-Feng, YAN Xue-Wei, ZHAO Wei, TANG Hua-Guo. Preparation of GaN Ceramic under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2002, 16(4): 259-264 . doi: 10.11858/gywlxb.2002.04.004
    [14]WEN Chao, ZHOU Gang, HAO Zhao-Yin, SUN De-Yu, LI Xun, LIU Xiao-Xin, SHI Xiao-Feng, HUO Hong-Fa. Study on the Property of Nanometric Diamond Particles under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 119-124 . doi: 10.11858/gywlxb.2000.02.007
    [15]LUO Xiang-Jie, DING Li-Ye, LIU Qiang, YE Li, LUO Bo-Cheng. A Study on the Diamond Synthesis by B4C under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 266-269 . doi: 10.11858/gywlxb.1997.04.006
    [16]HAO Zhao-Yin, GAO Chun-Xiao, LUO Wei, ZOU Guang-Tian, CHENG Kai-Jia, CHENG Shu-Yu. A Study of the Growth Interfaces of Diamond under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 1997, 11(3): 169-174 . doi: 10.11858/gywlxb.1997.03.002
    [17]ZHAO Xu-Dong, LIN Feng, LIU Xiao-Yang, HOU Wei-Min, LIU Wei-Na, SU Wen-Hui. Synthesis of Boron-Rich Boride NdB6 under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 170-175 . doi: 10.11858/gywlxb.1996.03.002
    [18]MA Xian-Feng, YAN Xue-Wei. The Crystallization of BN and the Synthesis of cBN at High Pressure and Temperature[J]. Chinese Journal of High Pressure Physics, 1996, 10(2): 97-101 . doi: 10.11858/gywlxb.1996.02.003
    [19]HAO Zhao-Yin, HE Yi-Xing, CHEN Yu-Fei, WANG De-Rong, WANG Yan-Di. The Graphitic Recrystallization and Growth of Diamond under High Pressure and Temperature[J]. Chinese Journal of High Pressure Physics, 1992, 6(2): 81-91 . doi: 10.11858/gywlxb.1992.02.001
    [20]WANG Li-Jun, HU Jing-Zhu, CHE Rong-Zheng, TANG Ru-Ming, CHEN Liang-Chen. A Diamond Anvil Cell with External Heater and Pressure Measurement by Using Ruby at High Temperature[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 335-339 . doi: 10.11858/gywlxb.1988.04.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(2028) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return