ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
GUO Xiaojun, WEN Heming. Borehole Blasting-Induced Fractures in Rocks[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
GUO Xiaojun, WEN Heming. Borehole Blasting-Induced Fractures in Rocks[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763
Dynamic fracture behavior of rocks under blasting loading are a major concern in civil engineering, mining, oil and gas industries. This study presented herein is on the borehole blasting-induced fractures in rocks. The paper consists of two parts: the first part gives a brief description of a constitutive model for rocks subjected to dynamic loading, which is mainly based on a recently developed model for concrete; the second part deals with numerical simulations of borehole blasting-induced fractures in rocks. The values of various parameters in the constitutive model for granite are first estimated and then employed in the numerical simulations. It is demonstrated that the numerical results in terms of peak pressures and crack patterns predicted from the present model are in good agreement with the experimental observations made both in cylindrical granite sample reported in the literature and in square granite specimens conducted in our own laboratory. Moreover, the analysis shows that the experimentally observed crack patterns are mainly caused by tensile stress, while the smaller cracks around borehole are created largely by compression/shear stress.
对于大多数透明材料,当压力达到几百吉帕甚至太帕量级时,冲击波后的状态为流体状态(声速等价于体声速),电介质会发生绝缘体金属相变或者处于电离状态,冲击波阵面表现出很高的反射率,速度干涉仪可以直接对冲击波速度进行测量[10]。在满足一维平面冲击加载条件下,通过靶的设计引入侧向稀疏波(声波),稀疏区域压力下降,受影响区域的冲击波速度下降,冲击波面在稀疏区发生弯曲。利用线成像VISAR(Velocity interferometer system for any reflector)测量冲击波阵面速度历史已经成为冲击动力学领域的常用手段,但是线成像VISAR携带的空间分辨能力却长期被忽略[9, 11]。当线成像VISAR的物镜参数f/D较大时,测量面微小的倾斜会使探测光的回光无法进入成像透镜,导致信号丢失,所以当引入侧向稀疏时,冲击波波阵面发生弯曲,弯曲部分在VISAR像面不会有反射信号,因而可以在记录系统中测到平面冲击波和弯曲冲击波的边界随时间的横向位移。该位移数据反映了冲击波后侧向小扰动的传播过程(声速),可与冲击波速度直接关联,进而获得主冲击绝热线上的连续声速变化曲线。更为详细的原理参考文献[9]。
GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157.
[2]
ROSSMANITH H P, DAEHNKE A, KNASMILLNER R E, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(11): 1617–1636.
[3]
ZHANG Y Q, HAO H, LU Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917–929. doi: 10.1016/S0020-7225(02)00378-6
[4]
KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202.
[5]
ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002
[6]
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. doi: 10.1016/j.ijimpeng.2007.12.010
[7]
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
[8]
TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. doi: 10.1016/0045-7825(86)90057-5
[9]
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, 1993: 591−600.
[10]
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315−322.
[11]
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
[12]
TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. doi: 10.1016/j.ijimpeng.2010.04.004
[13]
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. doi: 10.1016/j.ijimpeng.2016.04.014
[14]
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016
[15]
XU L Y, XU H, WEN H M. On the penetration and perforation of concrete targets struck transversely by ogival-nosed projectiles—a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 39–55. doi: 10.1016/j.ijimpeng.2018.11.001
[16]
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005
[17]
DEHGHAN BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. doi: 10.1016/j.ijimpeng.2011.08.010
[18]
KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. doi: 10.1016/0167-6636(87)90027-5
[19]
CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. doi: 10.1016/S1365-1609(03)00072-8
[20]
WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. doi: 10.1016/j.mechmat.2008.10.004
[21]
CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907−916.
[22]
KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. doi: 10.1016/j.ijrmms.2007.07.003
[23]
ASPRONE D, CADONI E, PROTA A, et al. Dynamic behavior of a Mediterranean natural stone under tensile loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 514–520. doi: 10.1016/j.ijrmms.2008.09.010
[24]
DEHGHAN BANADAKI M M, MOHANTY B. Blast induced pressure in some granitic rocks [C]//Proceedings of the 5th Asian Rock Mechanics Symposium (ARMS-ISRM). Tehran: Curran Associates, 2008: 933−939.
[25]
GUO X J. A study of fracture mechanisms in brittle materials under borehole blasting [D]. Hefei: University of Science and Technology of China, 2013.
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524