Citation: | GUO Xiaojun, WEN Heming. Borehole Blasting-Induced Fractures in Rocks[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064203. doi: 10.11858/gywlxb.20210763 |
[1] |
GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157.
|
[2] |
ROSSMANITH H P, DAEHNKE A, KNASMILLNER R E, et al. Fracture mechanics applications to drilling and blasting [J]. Fatigue & Fracture of Engineering Materials & Structures, 1997, 20(11): 1617–1636.
|
[3] |
ZHANG Y Q, HAO H, LU Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. International Journal of Engineering Science, 2003, 41(9): 917–929. doi: 10.1016/S0020-7225(02)00378-6
|
[4] |
KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202.
|
[5] |
ZHU Z M, MOHANTY B, XIE H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. doi: 10.1016/j.ijrmms.2006.09.002
|
[6] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. doi: 10.1016/j.ijimpeng.2007.12.010
|
[7] |
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
|
[8] |
TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. doi: 10.1016/0045-7825(86)90057-5
|
[9] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]//14th International Symposium on Ballistics. Quebec, 1993: 591−600.
|
[10] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315−322.
|
[11] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
|
[12] |
TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. doi: 10.1016/j.ijimpeng.2010.04.004
|
[13] |
KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. doi: 10.1016/j.ijimpeng.2016.04.014
|
[14] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. doi: 10.1016/j.ijimpeng.2017.02.016
|
[15] |
XU L Y, XU H, WEN H M. On the penetration and perforation of concrete targets struck transversely by ogival-nosed projectiles—a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 39–55. doi: 10.1016/j.ijimpeng.2018.11.001
|
[16] |
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. doi: 10.1016/j.ijimpeng.2013.04.005
|
[17] |
DEHGHAN BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. doi: 10.1016/j.ijimpeng.2011.08.010
|
[18] |
KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. doi: 10.1016/0167-6636(87)90027-5
|
[19] |
CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. doi: 10.1016/S1365-1609(03)00072-8
|
[20] |
WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. doi: 10.1016/j.mechmat.2008.10.004
|
[21] |
CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907−916.
|
[22] |
KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. doi: 10.1016/j.ijrmms.2007.07.003
|
[23] |
ASPRONE D, CADONI E, PROTA A, et al. Dynamic behavior of a Mediterranean natural stone under tensile loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 514–520. doi: 10.1016/j.ijrmms.2008.09.010
|
[24] |
DEHGHAN BANADAKI M M, MOHANTY B. Blast induced pressure in some granitic rocks [C]//Proceedings of the 5th Asian Rock Mechanics Symposium (ARMS-ISRM). Tehran: Curran Associates, 2008: 933−939.
|
[25] |
GUO X J. A study of fracture mechanisms in brittle materials under borehole blasting [D]. Hefei: University of Science and Technology of China, 2013.
|