Volume 35 Issue 5
Sep 2021
Turn off MathJax
Article Contents
XIE Yafei, JIANG Changguo, LUO Xingli, TAN Dayong, XIAO Wansheng. Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761
Citation: XIE Yafei, JIANG Changguo, LUO Xingli, TAN Dayong, XIAO Wansheng. Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 051201. doi: 10.11858/gywlxb.20210761

Synthesis of 6H-Type Hexagonal Perovskite Phase of BaGeO3 at High Temperature and High Pressure

doi: 10.11858/gywlxb.20210761
  • Received Date: 29 Mar 2021
  • Rev Recd Date: 14 Apr 2021
  • Barium germanate (BaGeO3) was studied using double-sided laser-heating diamond anvil cell (LHDAC). At ambient conditions, BaGeO3 has a pseudowollastonite structure. At about 12 GPa, BaGeO3 crystal begin to translate into an amorphous phase. The amorphous BaGeO3 was further pressurized to about 22 GPa and then heated at (1800 ± 200) K conditions. Raman spectra shows the amorphous BaGeO3 transforms into a new high pressure phase, which has not been reported so far. The new high pressure phase of BaGeO3 was further measured with the synchrotron radiation X-ray diffraction in the pressure ranges of 0−17.4 GPa. The diffraction patterns can be indexed with a 6H-type hexagonal perovskite structure and this structure remained stable as the pressure unloading to ambient pressure. In order to obtain the structural parameters of the new high pressure phase of BaGeO3, the X-ray diffraction patterns of 17.4 GPa and ambient pressure were refined with a model structure of 6H-type perovskite using the Rietveld method. The experimental pressure-volume data was fitted with the second-order Birch-Murnaghan equation of state, and obtained the volume bulk modulus and zero-pressure unit-cell volume are K0 = 150(2) GPa and V0 = 373.0(3) A3 respectively. On the basis of the experimental results in this study, we also carried out the first-principle theoretical calculation on the 6H-type perovskite BaGeO3. The calculated lattice constants and volume with the corresponding pressures are good agreement with the experimental results. Furthermore, the calculated volume bulk modulus and zero-pressure unit-cell volume are K0 = 153(1) GPa, V0 = 374.2(1) A3 respectively. The calculated Raman spectra at 20.0 GPa is also well consistent with the experimental results. This study not only complements the structural phase transition of pseudowallastonite BaGeO3 at high temperature and high pressure, but also builds a solid foundation for further characterizing the physical and chemical properties of pseudowallastonite BaGeO3, and gives a chance to develop the perovskite structured germanate functional materials. In addition, this study has an important indicative significance for us to understand the phase transition rule and stability of silicate perovskite, the physical and chemical properties and changes of Earth's lower mantle.

     

  • loading
  • [1]
    MIZOGUCHI H, KAMIYA T, MATSUISHI S, et al. A germanate transparent conductive oxide [J]. Nature Communications, 2011, 2: 470. doi: 10.1038/NCOMMS1484
    [2]
    HORIUCHI H, ITO E, WEIDNER D J. Perovskite-type MgSiO3: single-crystal X-ray diffraction study [J]. American Mineralogist, 1987, 72(3/4): 357–360.
    [3]
    MAO H K, CHEN L C, HEMLEY R J, et al. Stability and equation of state of CaSiO3-perovskite to 134 GPa [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B12): 17889–17894. doi: 10.1029/JB094iB12p17889
    [4]
    XIAO W S, TAN D Y, ZHOU W, et al. A new cubic perovskite in PbGeO3 at high pressures [J]. American Mineralogist, 2012, 97(7): 1193–1198. doi: 10.2138/am.2012.4021
    [5]
    XIAO W S, TAN D Y, ZHOU W, et al. Cubic perovskite polymorph of strontium metasilicate at high pressures [J]. American Mineralogist, 2013, 98(11/12): 2096–2104. doi: 10.2138/am.2013.4470
    [6]
    GIBBS G V, BOISEN M B, HILL F C, et al. SiO and GeO bonded interactions as inferred from the bond critical point properties of electron density distributions [J]. Physics and Chemistry of Minerals, 1998, 25(8): 574–584. doi: 10.1007/s002690050150
    [7]
    AKAOGI M, KOJITANI H, YUSA H, et al. High-pressure transitions and thermochemistry of MGeO3 (M = Mg, Zn and Sr) and Sr-silicates: systematics in enthalpies of formation of A2+B4+O3 perovskites [J]. Physics and Chemistry of Minerals, 2005, 32(8/9): 603–613. doi: 10.1007/s00269-005-0034-1
    [8]
    NAKATSUKA A, ARIMA H, OHTAKA O, et al. Crystal structure of SrGeO3 in the high-pressure perovskite-type phase [J]. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71(5): 502–504. doi: 10.1107/S2056989015007264
    [9]
    ROSS N L, ANGEL R J. Compression of CaTiO3 and CaGeO3 perovskites [J]. American Mineralogist, 1999, 84(3): 277–281. doi: 10.2138/am-1999-0309
    [10]
    RUNGE C E, KUBO A, KIEFER B, et al. Equation of state of MgGeO3 perovskite to 65 GPa: comparison with the post-perovskite phase [J]. Physics and Chemistry of Minerals, 2006, 33(10): 699–709. doi: 10.1007/s00269-006-0116-8
    [11]
    YUSA H, AKAOGI M, SATA N, et al. Letter: unquenchable hexagonal perovskite in high-pressure polymorphs of strontium silicates [J]. American Mineralogist, 2005, 90(5/6): 1017–1020. doi: 10.2138/am.2005.1835
    [12]
    YUSA H, SATA N, OHISHI Y. Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure [J]. American Mineralogist, 2007, 92(4): 648–654. doi: 10.2138/am.2007.2314
    [13]
    HIRAMATSU H, YUSA H, IGARASHI R, et al. An exceptionally narrow band-gap (~4 eV) silicate predicted in the cubic perovskite structure: BaSiO3 [J]. Inorganic Chemistry, 2017, 56(17): 10535–10542. doi: 10.1021/acs.inorgchem.7b01510
    [14]
    YANG H X, PREWITT C T. Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3) [J]. American Mineralogist, 1999, 84(11/12): 1902–1905. doi: 10.2138/am-1999-11-1217
    [15]
    NISHI F. Strontium metagermanate, SrGeO3 [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53(4): 399–401. doi: 10.1107/S0108270196013960
    [16]
    WAN S M, ZENG Y, YAO Y N, et al. BaGeO3: a mid-IR transparent crystal with superstrong raman response [J]. Inorganic Chemistry, 2020, 59(6): 3542–3545. doi: 10.1021/acs.inorgchem.0c00155
    [17]
    GSPAN C, KAHLENBERG V, KOTHLEITNER G, et al. Atomic and domain structure of the low-temperature phase of barium metagermanate (BaGeO3) [J]. Acta Crystallographica Section A: Foundations of Crystallography, 2006, 62(6): 1002–1009. doi: 10.1107/S0108768106039140
    [18]
    SHIMIZU Y, SYONO Y, AKIMOTO S. High-pressure transformations in SrGeO3, SrSiO3, BaGeO3, and BaSiO3 [J]. High Temperatures-High Pressures, 1970, 2(1): 113–120.
    [19]
    OZIMA M, SUSAKI J I, AKIMOTO S I, et al. The system BaO-GeO2 at high pressures and temperatures, with special reference to high-pressure transformations in BaGeO3, BaGe2O5, and Ba2Ge5O12 [J]. Journal of Solid State Chemistry, 1982, 44(3): 307–317. doi: 10.1016/0022-4596(82)90378-4
    [20]
    GASPARIK T, WOLF K, SMITH C M. Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa [J]. American Mineralogist, 1994, 79(11/12): 1219–1222.
    [21]
    AKAOGI M, YANO M, TEJIMA Y, et al. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 145–156. doi: 10.1016/j.pepi.2003.08.008
    [22]
    KATZ L, WARD R. Structure relations in mixed metal oxides [J]. Inorganic Chemistry, 1964, 3(2): 205–211. doi: 10.1021/ic50012a013
    [23]
    CHENG J G, ALONSO J A, SUARD E, et al. A new perovskite polytype in the high-pressure sequence of BaIrO3 [J]. Journal of the American Chemical Society, 2009, 131(21): 7461–7469. doi: 10.1021/ja901829e
    [24]
    SASAKI S, PREWITT C T, LIEBERMANN R C. The crystal structure of CaGeO3 perovskite and the crystal chemistry of the GdFeO3-type perovskites [J]. American Mineralogist, 1983, 68(11/12): 1189–1198.
    [25]
    SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A: Foundations and Advances, 1976, 32(5): 751–767. doi: 10.1107/S0567739476001551
    [26]
    MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [27]
    HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/6): 235–248. doi: 10.1080/08957959608201408
    [28]
    HOLLAND T J B, REDFERN S A T. Unit cell refinement from powder diffraction data: the use of regression diagnostics [J]. Mineralogical Magazine, 1997, 61(404): 65–77. doi: 10.1180/MINMAG.1997.061.404.07
    [29]
    TOBY B H, VON DREELE R B. GSAS-Ⅱ: the genesis of a modern open-source all purpose crystallography software package [J]. Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
    [30]
    GONZALEZ-PLATAS J, ALVARO M, NESTOLA F, et al. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching [J]. Journal of Applied Crystallography, 2016, 49(4): 1377–1382. doi: 10.1107/S1600576716008050
    [31]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [32]
    LIN C C, SHEN P Y. Pressure-induced metastable phase transformations of calcium metasilicate (CaSiO3): a Raman spectroscopic study [J]. Materials Chemistry and Physics, 2016, 182: 508–519. doi: 10.1016/j.matchemphys.2016.07.065
    [33]
    KRONBO C H, MENESCARDI F, CERESOLI D, et al. High pressure structure studies of three SrGeO3 polymorphs: amorphization under pressure [J]. Journal of Alloys and Compounds, 2021, 855: 157419. doi: 10.1016/j.jallcom.2020.157419
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(2177) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return