Citation: | LIU Yang, XU Huaizhong, WANG Xiaofeng, LI Zhiguo, HU Jianbo, WANG Yonggang. Progress in Dynamic Responses and Microstructure Evolution of the Additive Manufactured Alloys under Impact Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040102. doi: 10.11858/gywlxb.20210760 |
[1] |
SHIPLEY H, MCDONNELL D, CULLETON M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review [J]. International Journal of Machine Tools and Manufacture, 2018, 128: 1–20. doi: 10.1016/j.ijmachtools.2018.01.003
|
[2] |
HAN Q Q, SETCHI R, EVANS S L. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting [J]. Powder Technology, 2016, 297: 183–192. doi: 10.1016/j.powtec.2016.04.015
|
[3] |
LIN K J, YUAN L H, GU D D. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting [J]. Journal of Materials Processing Technology, 2019, 267: 34–43. doi: 10.1016/j.jmatprotec.2018.12.004
|
[4] |
LAKHDAR Y, TUCK C, BINNER J, et al. Additive manufacturing of advanced ceramic materials [J]. Progress in Materials Science, 2021, 116: 100736. doi: 10.1016/j.pmatsci.2020.100736
|
[5] |
WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing [J]. Progress in Materials Science, 2020, 111: 100638. doi: 10.1016/j.pmatsci.2020.100638
|
[6] |
SONG C H, WANG A M, WU Z J, et al. The design and manufacturing of a titanium alloy beak for Grus japonensis using additive manufacturing [J]. Materials & Design, 2017, 117: 410–416. doi: 10.1016/j.matdes.2016.11.092
|
[7] |
CAI C, TEY W S, CHEN J Y, et al. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion [J]. Journal of Materials Processing Technology, 2021, 288: 116882. doi: 10.1016/j.jmatprotec.2020.116882
|
[8] |
PUTRA N E, LEEFLANG M A, MINNEBOO M, et al. Extrusion-based 3D printed biodegradable porous iron [J]. Acta Biomaterialia, 2021, 121: 741–756. doi: 10.1016/j.actbio.2020.11.022
|
[9] |
BISWAS M C, CHAKRABORTY S, BHATTACHARJEE A, et al. 4D printing of shape memory materials for textiles: mechanism, mathematical modeling, and challenges [J]. Advanced Function Materials, 2021, 31(19): 2100257. doi: 10.1002/adfm.202100257
|
[10] |
ZHANG C, CAI D P, LIAO P, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation [J]. Acta Biomaterialia, 2021, 122(1): 101–110.
|
[11] |
WANG J W, LUO Q, WANG H M, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Additive Manufacturing, 2020, 32: 101007. doi: 10.1016/j.addma.2019.101007
|
[12] |
LI J Q, LIN X, YANG Y, et al. Distinction in electrochemical behaviour of Ti6Al4V alloy produced by direct energy deposition and forging [J]. Journal of Alloys and Compounds, 2021, 860: 157912. doi: 10.1016/j.jallcom.2020.157912
|
[13] |
TANVIR A N M, AHSAN M R U, SEO G, et al. Phase stability and mechanical properties of wire+arc additively manufactured H13 tool steel at elevated temperatures [J]. Journal of Materials Science & Technology, 2021, 67: 80–94. doi: 10.1016/j.jmst.2020.04.085
|
[14] |
VRANCKEN B, THIJS L, KRUTH J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties [J]. Journal of Alloys and Compounds, 2012, 541: 177–185. doi: 10.1016/j.jallcom.2012.07.022
|
[15] |
ZHANG J L, SONG B, WEI Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends [J]. Journal of Materials Science & Technology, 2109, 35(2): 270–284. doi: 10.1016/j.jmst.2018.09.004
|
[16] |
ZHAO D C, LIN F. Dual-detector electronic monitoring of electron beam selective melting [J]. Journal of Materials Processing Technology, 2021, 289: 116935. doi: 10.1016/j.jmatprotec.2020.116935
|
[17] |
LIU Y, PANG Z C, LI M, et al. Investigation into the dynamic mechanical properties of selective laser melted Ti-6Al-4V alloy at high strain rate tensile loading [J]. Materials Science and Engineering: A, 2019, 745: 440–449. doi: 10.1016/j.msea.2019.01.010
|
[18] |
ZHENG C, WANG F C, CHENG X W, et al. Effect of microstructures on ballistic impact property of Ti-6Al-4V targets [J]. Materials Science and Engineering: A, 2014, 608: 53–62. doi: 10.1016/j.msea.2014.04.032
|
[19] |
YANG B H, CAO Z Q, CHANG Z P, et al. The effect of the reflected shock wave on the foam material [J]. International Journal of Impact Engineering, 2021, 149: 103773. doi: 10.1016/j.ijimpeng.2020.103773
|
[20] |
WALSH J M, CHRISTIAN R H. Equation of state of metals from shock wave measurements [J]. Physical Review, 1955, 97(6): 1544–1556. doi: 10.1103/PhysRev.97.1544
|
[21] |
WALSH J M, RICE M H, MCQUEEN R G, et al. Shock-wave compressions of twenty-seven metals: equations of state of metals [J]. Physical Review, 1957, 108(2): 196–216. doi: 10.1103/PhysRev.108.196
|
[22] |
WANG Y G, HE H L, WANG L L, et al. Time-resolved dynamic tensile spall of pure aluminum under laser irradiation [J]. Journal of Applied Physics, 2006, 100(3): 033511. doi: 10.1063/1.2215074
|
[23] |
XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments [J]. International Journal of Impact Engineering, 2018, 111: 255–272. doi: 10.1016/j.ijimpeng.2017.09.018
|
[24] |
KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264–1283. doi: 10.1016/j.conbuildmat.2018.09.187
|
[25] |
LI K B, LI X J, WANG X H, et al. A simple electrometric method for parametric determination of Jones-Wilkins-Lee equation of state from underwater explosion test [J]. Journal of Applied Physics, 2018, 124(21): 215906. doi: 10.1063/1.5049497
|
[26] |
JONES D R, FENSIN S J, NDEFRU B G, et al. Spall fracture in additive manufactured tantalum [J]. Journal of Applied Physics, 2018, 124(22): 225902. doi: 10.1063/1.5063930
|
[27] |
LU G X, TRDAN U, ZHANG Y K, et al. The distribution regularity of residual stress on a metal surface after laser shock marking [J]. Mechanics of Materials, 2020, 143: 103310. doi: 10.1016/j.mechmat.2020.103310
|
[28] |
DWAIKAT M B, KODUR V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural systems [J]. Fire Safety Journal, 2009, 44(3): 425–434. doi: 10.1016/j.firesaf.2008.09.001
|
[29] |
LI K B, LI X J, YAN H H, et al. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion [J]. Review of Scientific Instruments, 2017, 88(12): 123905. doi: 10.1063/1.4999144
|
[30] |
JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337
|
[31] |
LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
|
[32] |
THOMPSON S M, ASPIN Z S, SHAMSAEI N, et al. Additive manufacturing of heat exchangers: a case study on a multi-layered Ti-6Al-4V oscillating heat pipe [J]. Additive Manufacturing, 2015, 8: 163–174. doi: 10.1016/j.addma.2015.09.003
|
[33] |
HAUBRICH J, GUSSONE J, BARRIOBERO-VILA P, et al. The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V [J]. Acta Materialia, 2019, 167: 136–148. doi: 10.1016/j.actamat.2019.01.039
|
[34] |
LI Z, LI J, LIU J, et al. Structure and formation mechanism of α/α interface in laser melting deposited α+β titanium alloy [J]. Journal of Alloys and Compounds, 2016, 657: 278–285. doi: 10.1016/j.jallcom.2015.09.236
|
[35] |
TAN H, GUO M L, CLARE A T, et al. Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed energy deposition [J]. Journal of Materials Science & Technology, 2019, 35(9): 2027–2037. doi: 10.1016/J.JMST.2019.05.008
|
[36] |
BISWAS N, DING J L, BALLA V K, et al. Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading [J]. Materials Science and Engineering: A, 2012, 549: 213–221. doi: 10.1016/j.msea.2012.04.036
|
[37] |
傅华, 李涛, 吴廷烈, 等. 冲击作用下PBX炸药预制孔洞塌陷过程的实验探索 [J]. 高压物理学报, 2015, 29(4): 268–272. doi: 10.11858/gywlxb.2015.04.005
FU H, LI T, WU T L, et al. Experiment of cavity collapse process in plastic-bonded explosives under shock loading [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 268–272. doi: 10.11858/gywlxb.2015.04.005
|
[38] |
LIU Y, XU H Z, ZHU L, et al. Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti-6Al-4V alloy with different heating treatments [J]. Materials Science and Engineering: A, 2021, 805: 140561. doi: 10.1016/j.msea.2020.140561
|
[39] |
MOHAMMADHOSSEINI A, MASOOD S H, FRASER D, et al. Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading [J]. Advanced in Manufacturing, 2015, 3(3): 232–243. doi: 10.1007/s40436-015-0119-0
|
[40] |
ALAGHMANDFARD R, CHALASANI D, HADADZADEH A, et al. Dynamic compressive response of electron beam melted Ti-6Al-4V under elevated strain rates: microstructure and constitutive models [J]. Additive Manufacturing, 2020, 35: 101347. doi: 10.1016/j.addma.2020.101347
|
[41] |
ALAGHMANDFARD R, DHARMENDRA D, ODESHI A G, et al. Dynamic mechanical properties and failure characteristics of electron beam melted Ti-6Al-4V under high strain rate impact loadings [J]. Materials Science and Engineering: A, 2020, 793: 139794. doi: 10.1016/j.msea.2020.139794
|
[42] |
LI P H, GUO W G, HUANG W D, et al. Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures [J]. Materials Science and Engineering: A, 2015, 647: 34–42. doi: 10.1016/j.msea.2015.08.043
|
[43] |
BROWN A D, AMERI A H, GREGG A, et al. Dynamic mechanical response of additive manufactured Ti-6Al-4V [C]//AIPConference Proceedings, 2018, 1979: 070008.
|
[44] |
JONES D R, FENSIN S J, DIPPO O, et al. Spall fracture in additive manufactured Ti-6Al-4V [J]. Journal of Applied Physics, 2016, 120(13): 135902. doi: 10.1063/1.4963279
|
[45] |
RODRIGUEZ O L, ALLISON P G, WHITTINGTON W R, et al. Strain rate effect on the tension and compression stress-state asymmetry for electron beam additive manufactured Ti6Al4V [J]. Materials Science and Engineering: A, 2018, 713: 125–133. doi: 10.1016/J.MSEA.2017.12.062
|
[46] |
YANG D K, CIZEK P, HODGSON P D, et al. Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium [J]. Acta Materialia, 2010, 58(13): 4536–4548. doi: 10.1016/j.actamat.2010.05.007
|
[47] |
YANG H L, WANG D D, ZHU X J, et al. Dynamic compression-induced twins and martensite and their combined effects on the adiabatic shear behavior in a Ti-8.5Cr-1.5Sn alloy [J]. Materials Science and Engineering: A, 2019, 759: 203–209. doi: 10.1016/J.MSEA.2019.05.040
|
[48] |
MING W W, CHEN J, AN Q L, et al. Dynamic mechanical properties and machinability characteristics of selective laser melted and forged Ti6Al4V [J]. Journal of Materials Processing Technology, 2019, 271: 284–292. doi: 10.1016/j.jmatprotec.2019.04.015
|
[49] |
SHI G Q, JIN S, XUE G, et al. A conducting polymer film stronger than aluminum [J]. Science, 1995, 267(5200): 994–996. doi: 10.1126/science.267.5200.994
|
[50] |
ZARETSKY E, STERN A, FRAGE N. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting [J]. Materials Science and Engineering: A, 2017, 688: 364–370. doi: 10.1016/J.MSEA.2017.02.004
|
[51] |
HADADZADEH A, AMIRKHIZ S B, ODESHI A, et al. Dynamic loading of direct metal laser sintered AlSi10Mg alloy: strengthening behavior in different building directions [J]. Materials & Design, 2018, 159: 201–211. doi: 10.1016/j.matdes.2018.08.045
|
[52] |
NUREL B, NAHMANY M, FRAGE N, et al. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting [J]. Additive Manufacturing, 2018, 22: 823–833. doi: 10.1016/j.addma.2018.06.001
|
[53] |
PONNUSAM P, MASOOD S H, RUAN D, et al. Dynamic compressive behaviour of selective laser melted AlSi12 alloy: effect of elevated temperature and heat treatment [J]. Additive Manufacturing, 2020, 36: 101614. doi: 10.1016/j.addma.2020.101614
|
[54] |
PONNUSAM P, MASOOD S H, RUAN D, et al. High strain rate dynamic behaviour of AlSi12 alloy processed by selective laser melting [J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 1023–1035. doi: 10.1007/S00170-018-1873-5
|
[55] |
ASGARI H, ODESHI A, HOSSEINKHANI K, et al. On dynamic mechanical behavior of additively manufactured AlSi10Mg_200C [J]. Materials Letters, 2018, 211: 187–190. doi: 10.1016/j.matlet.2017.10.001
|
[56] |
BAXTER C, CYR E, ODESHI A, et al. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading [J]. Materials Science and Engineering: A, 2018, 731: 296–308. doi: 10.1016/J.MSEA.2018.06.040
|
[57] |
LAURENÇON M, RESSÉGUIER T, LOISON D, et al. Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading [J]. Materials Science and Engineering: A, 2019, 748: 407–417.
|
[58] |
LAURENÇON M, RESSÉGUIER T, LOISON D, et al. Dynamic behaviour and spall fracture of laser shock-loaded AlSi10Mg alloy obtained by selective laser melting [J]. AIP Conference Proceedings, 2020, 2272(1): 100018.
|
[59] |
TIAMIYU A A, BASU R, ODESHI A G, et al. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading [J]. Materials Science and Engineering: A, 2015, 636: 379–388. doi: 10.1016/J.MSEA.2015.03.113
|
[60] |
GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Review, 2012, 57(2): 133–164. doi: 10.1179/1743280411Y.0000000014
|
[61] |
FELDHAUSEN T, RAGHAVAN N, SALEEBY K, et al. Mechanical properties and microstructure of 316L stainless steel produced by hybrid manufacturing [J]. Journal of Materials Processing Technology, 2021, 290: 116970. doi: 10.1016/j.jmatprotec.2020.116970
|
[62] |
WISE J L, ADAMS D P, NISHIDA E E, et al. Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel [J]. AIP Conference Proceedings, 2017, 1793: 100015.
|
[63] |
POKHAREL R, PATRA A, BROWN D W, et al. An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations [J]. International Journal of Plasticity, 2019, 121: 201–217. doi: 10.1016/j.ijplas.2019.06.005
|
[64] |
SONG B, NISHIDA E, SANBORN B, et al. Compressive and tensile stress-strain responses of additively manufactured (AM) 304L stainless steel at high strain rates [J]. Journal of Dynamic Behavior of Materials, 2017, 3(3): 412–425. doi: 10.1007/s40870-017-0122-6
|
[65] |
WANG X F, LIU Y, SHI T Y, et al. Strain rate dependence of mechanical property in a selective laser melted 17-4 PH stainless steel with different states [J]. Materials Science and Engineering: A, 2020, 792: 139776. doi: 10.1016/J.MSEA.2020.139776
|
[66] |
WANG X F, WANG G, SHI T Y, et al. Tensile mechanical behavior and spall response of a selective laser melted 17-4 PH stainless steel [J]. Metallurgical and Materials Transactions A, 2021, 52: 2369–2388. doi: 10.1007/s11661-021-06229-1
|
[67] |
史同亚, 刘东升, 陈伟, 等. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏 [J]. 爆炸与冲击, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015
SHI T Y, LIU D S, CHEN W, et al. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting [J]. Explosion and Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015
|
[68] |
CLAUSEN B, BROWN D W, CARPENTER J S, et al. Deformation behavior of additively manufactured GP1 stainless steel [J]. Materials Science and Engineering: A, 2017, 696: 331–340. doi: 10.1016/j.msea.2017.04.081
|
[69] |
GRAY Ⅲ G T, LIVESCU V, RIGG P A, et al. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel [J]. Acta Materialia, 2017, 138: 140–149. doi: 10.1016/j.actamat.2017.07.045
|
[70] |
CARLTON H D, HABOU A, GALLEGOS G F, et al. Damage evolution and failure mechanisms in additively manufactured stainless steel [J]. Materials Science and Engineering: A, 2016, 651: 406–414. doi: 10.1016/j.msea.2015.10.073
|
[71] |
RIZA S H, MASOOD S H, WEN C, et al. Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition [J]. Materials & Design, 2014, 64: 650–659. doi: 10.1016/j.matdes.2014.08.026
|
[72] |
YANG Z, YU Y Y, WEI Y P, et al. Crushing behavior of a thin-walled circular tube with internal gradient grooves fabricated by SLM 3D printing [J]. Thin-Walled Structures, 2017, 111: 1–8. doi: 10.1016/j.tws.2016.11.004
|
[73] |
MONTERO-SISTIAGA M L, LIU Z Z, BAUTMANS L, et al. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting [J]. Additive Manufacturing, 2020, 31: 100995. doi: 10.1016/J.ADDMA.2019.100995
|
[74] |
HAN Q Q, GU Y C, HUANG J, et al. Selective laser melting of Hastelloy X nanocomposite: effects of TiC reinforcement on crack elimination and strength improvement [J]. Composites Part B: Engineering, 2020, 202: 108442. doi: 10.1016/j.compositesb.2020.108442
|
[75] |
YUAN K B, LI X L, GUO W G, et al. Effect of microstructures and defects on dynamic compression and shear performance of laser metal-deposited GH4169 superalloy [J]. Journal of Aerospace Engineering, 2020, 33(3): 04020008. doi: 10.1061/(ASCE)AS.1943-5525.0001122
|
[76] |
YUAN K B, GUO W G, LI P H, et al. Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: testing and constitutive modeling [J]. Mechanics of Materials, 2019, 135: 13–25. doi: 10.1016/j.mechmat.2019.04.024
|
[77] |
YUAN K B, GUO W G, LI P H, et al. Influence of process parameters and heat treatments on the microstructures and dynamic mechanical behaviors of Inconel 718 superalloy manufactured by laser metal deposition [J]. Materials Science and Engineering: A, 2018, 721: 215–225. doi: 10.1016/J.MSEA.2018.02.014
|
[78] |
BABAMIRI B B, INDECK J, DEMENEGHI G, et al. Quantification of porosity and microstructure and their effect on quasi-static and dynamic behavior of additively manufactured Inconel 718 [J]. Additive Manufacturing, 2020, 34: 101380. doi: 10.1016/j.addma.2020.101380
|
[79] |
LEE D G, LEE Y H, LEE S, et al. Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures [J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3103–3112. doi: 10.1007/S11661-004-0055-2
|
[80] |
刘静楠, 叶常青, 刘桂森, 等. 高温、高压、高应变速率动态过程晶体塑性有限元理论模型及其应用 [J]. 高压物理学报, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874
LIU J N, YE C Q, LIU G S, et al. Crystal plasticity finite element theoretical models and applications for high temperature, high pressure and high strain-rate dynamic process [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874
|
[81] |
BUDIWANTORO B, KARIEM M A, FEBRINAWARTA B. The influence of shear angles on the split Hopkinson shear bar testing [J]. International Journal of Impact Engineering, 2021, 149: 103787. doi: 10.1016/j.ijimpeng.2020.103787
|
[82] |
BACAK M, VALSECCHI J, ČAPEK J, et al. Neutron dark-field imaging applied to porosity and deformation-induced phase transitions in additively manufactured steels [J]. Materials & Design, 2020, 195: 109009. doi: 10.1016/J.MATDES.2020.109009
|
[83] |
TONG Q C, LUO X S, ADELEKE A A, et al. Machine learning metadynamics simulation of reconstructive phase transition [J]. Physics Review B, 2021, 103(5): 054107. doi: 10.1103/PhysRevB.103.054107
|
[84] |
WANG L, ZHAO F, ZHAO F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. Journal of Applied Physics, 2014, 115(5): 053528. doi: 10.1063/1.4864427
|
[85] |
SUN J L, TRIMBY P W, YAN F K, et al. Shear banding in commercial pure titanium deformed by dynamic compression [J]. Acta Materialia, 2014, 79: 47–58. doi: 10.1016/j.actamat.2014.07.011
|
[86] |
ZHOU Y, FAN Q B, LIU X, et al. Multi-scale crystal plasticity finite element simulations of the microstructural evolution and formation mechanism of adiabatic shear bands in dual-phase Ti20C alloy under complex dynamic loading [J]. Journal of Materials Science & Technology, 2020, 59: 138–148. doi: 10.1016/j.jmst.2020.03.079
|
[87] |
唐长国, 陈文涛, 朱金华. 钨合金高应变率导致的塑性降低及微观机理 [J]. 西安交通大学学报, 1997, 31(3): 28–32.
TANG C G, CHEN W T, ZHU J H. The plasticity decreasing induced by high strain rateof tungsten alloy [J]. Journal of Xi’an Jiaotong University, 1997, 31(3): 28–32.
|
[88] |
桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究 [J]. 高压物理学报, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008
GUI Y L, LIU C L, WANG Y P, et al. Spall fracture properties of AF1410 steel [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008
|
[89] |
祁美兰, 秦晓云, 张林, 等. HR2钢动态损伤与层裂的微观机理 [J]. 兵器材料科学与工程, 2006, 29(3): 29–32. doi: 10.3969/j.issn.1004-244X.2006.03.009
QI M L, QIN X Y, ZHANG L, et al. Micromechanism of the dynamic damage and spallation of HR2 steel [J]. Ordnance Material Science and Engineering, 2006, 29(3): 29–32. doi: 10.3969/j.issn.1004-244X.2006.03.009
|
[90] |
FADIDA R, RITTEL D, SHIRIZLY A. Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids [J]. Journal of Applied Mechanics, 2015, 82(4): 041004. doi: 10.1115/1.4029745
|
[91] |
GENG R W, DU J, WEI Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Additive Manufacturing, 2020, 36: 101735. doi: 10.1016/j.addma.2020.101735
|