Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
WANG Zhengtang, ZHANG Qi, WANG Chenlong, ZHAO Tingting, WANG Zhiyong. Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753
Citation: WANG Zhengtang, ZHANG Qi, WANG Chenlong, ZHAO Tingting, WANG Zhiyong. Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064202. doi: 10.11858/gywlxb.20210753

Influence of Joint Geometrical Parameters on Mechanical Properties of Rock Mass

doi: 10.11858/gywlxb.20210753
  • Received Date: 26 Mar 2021
  • Rev Recd Date: 20 Apr 2021
  • Rock mass is a discontinuous medium composed of intact rock and joints, whose mechanical properties are mainly determined by the geometrical and mechanical characteristics of joint. It is significantly valuable to explore the influence of joint on the mechanical behaviors of rock mass. In this paper, a synthetic rock mass model (SRM) is established by PFC2D software at first. Then the influence of joint geometrical parameters on rock mass mechanical properties, such as the strength indices and failure modes under uniaxial compression are studied. Through the orthogonal experimental analysis, the influence of the joint geometrical parameter on the strength index of rock mass is discussed. The analysis results show that when the joint dip angle is between 10° and 50°, the joint length, dip angle, spacing and rock bridge length have significant effect on the uniaxial compressive strength and elastic modulus of rock mass. When the joint dip angle is between 50° and 90°, the influence of the rock bridge length on the uniaxial compressive strength and elastic modulus of rock mass is not significant. The joint step angle has no significant influence on the uniaxial compressive strength and elastic modulus of rock mass no matter how much the joint dip angle is. The failure mode of rock mass is mainly affected by the joint dip angle and step angle. The research results provide valuable reference for the stability analysis of rock mass and the support design.

     

  • loading
  • [1]
    蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002: 84−89.

    CAI M F. Rock mechanics and engineering [M]. Beijing: Science Press, 2002: 84−89.
    [2]
    BAHRANI N, KAISER P K. Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks [J]. Computers and Geotechnics, 2016, 77: 56–67. doi: 10.1016/j.compgeo.2016.04.004
    [3]
    BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures [J]. Geomorphology, 2009, 103(1): 30–49. doi: 10.1016/j.geomorph.2008.04.010
    [4]
    MAS IVARS D, PIERCE M E, DARCEL C, et al. The synthetic rock mass approach for jointed rock mass modelling [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 219–244. doi: 10.1016/j.ijrmms.2010.11.014
    [5]
    YANG X L, YIN J H. Linear Mohr-Coulomb strength parameters from the non-linear Hoek-Brown rock masses [J]. International Journal of Non-Linear Mechanics, 2006, 41(8): 1000–1005. doi: 10.1016/j.ijnonlinmec.2006.08.003
    [6]
    咸玉席, 刘志远, 张俊江, 等. 三向围压下碳酸盐岩的动态力学试验 [J]. 高压物理学报, 2019, 33(2): 024201. doi: 10.11858/gywlxb.20180667

    XIAN Y X, LIU Z Y, ZHANG J J, et al. Experimental study on dynamic mechanics of carbonate rock under triaxial confining pressure [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024201. doi: 10.11858/gywlxb.20180667
    [7]
    伍杨, 张先锋, 徐晨阳, 等. 岩石材料冲击开坑行为研究 [J]. 高压物理学报, 2017, 31(5): 603–612. doi: 10.11858/gywlxb.2017.05.014

    WU Y, ZHANG X F, XU C Y, et al. Deformation of rock material target under high velocity impact [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603–612. doi: 10.11858/gywlxb.2017.05.014
    [8]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [9]
    CUNDALL P A. A discrete numerical model for granular assemblies, numerical model for granular assemblies [J]. Géothechnique, 2008, 29(30): 331–336.
    [10]
    陈新, 李东威, 王莉贤, 等. 单轴压缩下节理间距和倾角对岩体模拟试件强度和变形的影响研究 [J]. 岩土工程学报, 2014, 36(12): 2236–2245. doi: 10.11779/CJGE201412011

    CHEN X, LI D W, WANG L X, et al. Experimental study on effect of spacing and inclination angle of joints on strength and deformation properties of rock masses under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2236–2245. doi: 10.11779/CJGE201412011
    [11]
    BAHAADDINI M, HAGAN P C, MITRA R, et al. Parametric study of smooth joint parameters on the shear behaviour of rock joints [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 923–940. doi: 10.1007/s00603-014-0641-6
    [12]
    BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression [J]. Computers and Geotechnics, 2013, 49: 206–225. doi: 10.1016/j.compgeo.2012.10.012
    [13]
    BAHAADDINI M, SHEIKHPOURKHANI A M, MANSOURI H. Flat-joint model to reproduce the mechanical behaviour of intact rocks [J]. European Journal of Environmental and Civil Engineering, 2021, 25(8): 1427–1448. doi: 10.1080/19648189.2019.1579759
    [14]
    WANG C L, ZHANG C S, LI Y, et al. Numerical investigation of the mechanical properties of coal masses with T-junctions cleat networks under uniaxial compression [J]. International Journal of Coal Geology, 2019, 202: 128–146. doi: 10.1016/j.coal.2018.12.005
    [15]
    CHEN M, YANG S Q, RANJITH P G, et al. Cracking behavior of rock containing non-persistent joints with various joints inclinations [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102701. doi: 10.1016/j.tafmec.2020.102701
    [16]
    VERGARA M R, VAN SINT JAN M, LORIG L. Numerical model for the study of the strength and failure modes of rock containing non-persistent joints [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1211–1226. doi: 10.1007/s00603-015-0824-9
    [17]
    PRUDENCIO M, VAN SINT JAN M. Strength and failure modes of rock mass models with non-persistent joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 890–902. doi: 10.1016/j.ijrmms.2007.01.005
    [18]
    陈鹏宇, 余宏明. 平直节理黏结颗粒材料宏细观参数关系及细观参数的标定 [J]. 土木建筑与环境工程, 2016, 38(5): 74–84. doi: 10.11835/j.issn.1674-4764.2016.05.010

    CHEN P Y, YU H M. Relationship between macroparameters and microparameters of flat-jointed bonded-particle material and calibration of microparameters [J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(5): 74–84. doi: 10.11835/j.issn.1674-4764.2016.05.010
    [19]
    夏露, 刘晓非, 于青春. 基于块体化程度确定裂隙岩体表征单元体 [J]. 岩土力学, 2010, 31(12): 3991–3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047

    XIA L, LIU X F, YU Q C. Determining representative elementary volume of fractured rock mass based on blockiness analysis [J]. Rock and Soil Mechanics, 2010, 31(12): 3991–3996, 4005. doi: 10.3969/j.issn.1000-7598.2010.12.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(8)

    Article Metrics

    Article views(1274) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return