ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916
Citation: ZHANG Chunyun, LIU Zhifang. Dynamic Response of Aluminum Foam Filled Pipes under Lateral Explosive Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064201. doi: 10.11858/gywlxb.20210752

Dynamic Response of Aluminum Foam Filled Pipes under Lateral Explosive Load

doi: 10.11858/gywlxb.20210752
  • Received Date: 23 Mar 2021
  • Rev Recd Date: 16 Apr 2021
  • A combination of numerical simulation and theoretical analysis is used to study the dynamic response of foamed aluminum filled pipes under lateral explosion loads. The finite element software ABAQUS/EXPLICIT was used to carry out a numerical simulation study on the plastic deformation of the aluminum foam-filled tube under lateral explosive load, and the influence of the relative density of the foam aluminum, the diameter and wall thickness of the outer tube and other factors on the dynamic response of the structure was analyzed. Based on the ideal rigid-plastic foundation beam model, combined with the modal analysis method, a theoretical analysis model for predicting the mid-span deflection of the foamed aluminum filled pipe under lateral explosive load is established, and a dimensionless analysis is carried out. The change of the dimensionless deflection of the mid-span with the elementary impulse is obtained. The error between the theoretical prediction and the numerical simulation result of the foamed aluminum filled pipe mid-span deflection is within 20%, indicating that the established theoretical analysis model is reasonable and feasible. The relative density of foamed aluminum has a great influence on the mid-span deflection of the filled pipe under lateral explosive load. As the relative density of foamed aluminum increases, the mid-span deflection of the filled pipe decreases. As the diameter and wall thickness of the outer tube increase, the mid-span deflection decreases. The two modal functions assumed in the theoretical analysis have little effect on the mid-span deflection of the filled pipe.

     

  • 超硬材料是指维氏硬度大于40 GPa的材料[1-2]。这些材料具有优异的性能,如高硬度、良好的导热性和不可压缩性、稳定的折射率和化学性质,广泛应用于工业和日常生活中,如磨料涂层、切割和抛光工具等[3-5]。2005年,Kaner等[6]提出,过渡金属具有较高的价电子密度和较强的不可压缩性,轻元素之间的共价键为结构提供了较高的剪切模量,过渡金属硼化物、碳化物和氮化物具有较高的硬度,甚至可能达到超硬材料的标准。铬硼化物是一种耐磨材料,人们从实验和理论上对其特性进行了广泛的研究[7-8]。铬硼化物中,通过实验证实其结构有CrB4、CrB2、Cr2B3、Cr3B4、CrB、Cr5B3和Cr2B[9-13]。其中,CrB4因其高硬度备受关注,例如:Niu等[14]计算出空间群为Pnnm的CrB4的硬度为48 GPa,而后,Zhang等[15]利用第一性原理方法系统地研究了CrB4的硬度随压力的变化规律。其余铬硼化物普遍具有较低的硬度[16-20],限制了其工业应用。掺杂是一种提高材料硬度的行之有效的方法。Dovale-Farelo等[21]采用第一性原理方法研究了不同浓度下Cr1-xMoxB2的机械性能,结果表明,CrB2的硬度为17 GPa,不满足硬质材料的标准,而Cr3MoB8、Cr2MoB6、CrMoB4、CrMo2B6和CrMo3B8的硬度均超过20 GPa,为硬质材料。在铬硼化物体系中,Cr2B3的力学性质仍缺少系统的理论计算。1985年,Okada等[22]通过高温Al-Cr-B熔体制备了一种新型硼化铬晶体,即Cr2B3,随后采用单晶衍射法对Cr2B3的结构进行了研究[11];1996 年,该团队发现Cr2B3结晶呈正交晶系,空间群为Cmcm,在(010)平面上测得的硬度为(22.4±1.7) GPa[17]。由此可见,Cr2B3的硬度仅达到硬质材料的标准。通过元素掺杂方式提高Cr2B3的硬度,将有助于拓展其工业应用范围。此外,在实际应用中,往往会遇到高压这一特殊工况。因此,研究掺杂Cr2B3在高压下的结构和力学性质尤为重要。

    本工作首先将Cr2B3中的部分Cr元素分别替换为Sc、Ti、V和Zr元素,考虑两种不同的替换方式,然后筛选出更优的替换位置;而后,利用第一性原理方法,计算掺杂结构的晶格常数、弹性常数、态密度、电子局域函数等;最后,基于电子结构讨论过渡金属元素Sc、Ti、V、Zr的掺杂对Cr2B3维氏硬度和弹性模量的影响。

    采用密度泛函理论框架下的赝势平面波方法,运用CASTEP软件包[23]对Cr2B3及其掺杂化合物的结构进行优化。实验中证实Cr2B3为正交晶系结构[22],晶胞中共包含20个原子,考虑50%的掺杂浓度,则其掺杂化合物的化学式可表示为CrMB3(M=Sc, Ti, V, Zr)。电子与电子之间的交换关联能采用Perdew等[24]修正的PBESOL形式的广义梯度近似(generalized gradient approximation,GGA),离子实与价电子之间的相互作用势用超软赝势描述[25]。Cr原子和B原子的电子组态分别为 3d54s1和2s22p1,掺杂原子 Sc、Ti、V 和 Zr 的电子组态分别为3d14s2、3d24s2、3d34s2和4d25s2。倒易空间布里渊区k点采用Monkhorst-Pack[26]方法选取,积分网格为14×2×14,平面波基函数的截断能量取为650 eV。迭代过程中系统能量的收敛标准为5×10−6 eV/atom,作用在晶胞中每个原子上的力小于0.01 eV/Å,晶胞应力偏差低于0.02 GPa,最大位移的收敛公差小于5×10−4 Å。

    Cr2B3晶胞包含4个Cr2B3单元,其空间群为Cmcm,晶格常数a = 3.0264 Å,b = 18.1150 Å,c = 2.9542 Å。该结构共包含8个Cr原子、12个B原子,其中:Cr原子有2种占据方式,Cr1和Cr2占据的Wyckoff位置分别为4c (0, 0.42766, 0.25)和4c (0, −0.29630, 0.25);B 原子有3种占据方式,即4c (0, 0.02360, 0.25)、4c (0, 0.11860, 0.25)和4c (0, −0.17130, 0.25),晶体结构如图1(a)所示。将该结构作为母体结构,对Cr2B3进行掺杂。用 Sc、Ti、V和Zr分别替换Cr2B3晶格中的Cr1和Cr2,并对其进行几何优化,计算结果如表1所示。除Sc替换Cr2位置外,其他替换情况下计算结果均可达收敛标准。Ti、V、Zr掺杂元素替换Cr1位置时具有更低的形成能和生成焓,由此可见,Cr1位置为更优的替换位置。因此,将Cr2B3晶格中的Cr1原子分别替换为过渡金属原子 Sc、Ti、V和Zr,获得了掺杂结构CrMB3(M = Sc, Ti, V, Zr),如图1(b)所示。表1也给出了优化后的晶格常数,与实验值[11]比较发现,二者之间的差异很小,表明本研究选取的计算参数是可靠的。同时,掺杂结构的空间群未发生变化。由此可知,原子的替换并未对Cr2B3的晶格结构产生明显的影响。

    图  1  (a) Cr2B3 和 (b) CrMB3(M = Sc, Ti, V, Zr)的晶体结构(蓝色、绿色和粉色小球分别代表 Cr、B 和过渡金属原子)
    Figure  1.  Crystal structures of (a) Cr2B3 and (b) CrMB3 (M=Sc, Ti, V, Zr), where the blue, green and pink spheres represent Cr, B and transition metal atoms, respectively
    表  1  零压下Cr2B3及掺杂结构CrMB3(M=Sc, Ti, V, Zr)的晶格常数、形成焓及掺杂结构的形成能
    Table  1.  Lattice constants, formation enthalpy of Cr2B3 and CrMB3 (M = Sc, Ti, V, Zr), and impurity formation energy ofCrMB3 (M=Sc, Ti, V, Zr) at zero pressure
    Compounds Doping-site positionSpace groupLattice constantsEf/eVΔH/(eV∙atom−1)
    abc
    Cr2B3 Cmcm2.898318.04642.9286−0.4731
    CrScB3 Cr1Cmcm3.220718.52223.0293−0.9713−0.6653
    Cr2
    CrTiB3 Cr1Cmcm3.064818.16692.9746−1.9192−0.8561
    Cr2Cmcm3.054118.59002.9883−0.6876−0.6118
    CrVB3 Cr1Cmcm2.954618.08742.9436−1.1856−0.7092
    Cr2Cmcm2.954718.22542.9489−0.6797−0.6101
    CrZrB3 Cr1Cmcm3.297218.58723.0702−1.2236−0.7181
    Cr2Cmcm3.176320.01363.0524 0.1705−0.4424
    下载: 导出CSV 
    | 显示表格

    为研究掺杂元素对Cr2B3弹性性质的影响,首先要判断掺杂结构的稳定性。固体的结构稳定性可通过热力学稳定性、力学稳定性和动力学稳定性判断。

    对于母体结构Cr2B3,其热力学稳定性可通过生成焓判断

    ΔH(Cr2B3)=[H(Cr2B3)2H(Cr)3H(B)]/5
    (1)

    式中:ΔH(Cr2B3) 为化合物 Cr2B3 的生成焓,H(Cr2B3)为Cr2B3的焓值,H(Cr)和H(B)分别为Cr和B作为单质存在的焓值。对于掺杂结构,则需要计算其形成能Ef[27]

    Ef=E(CrMB3)E(Cr2B3)nμ(M)+nμ(Cr)
    (2)

    式中:Ef 为化合物 Cr2B3 的形成能,E(CrMB3)为Cr2B3 中掺杂Sc、Ti、V和Zr原子的总能量,E(Cr2B3)为Cr2B3的能量值,n为掺杂的原子数,μ为相应原子的化学势。ΔHEf的计算结果也列于表1中。可以看出,在零压下,Cr2B3的ΔH为负值,通过替换 Cr1 位置得到的掺杂结构CrMB3(M = Sc, Ti, V, Zr)的ΔHEf均为负值,表明它们都具备热力学稳定性。

    本研究将通过计算上述结构的弹性常数来判断它们的力学稳定性。上述所有结构都属于正交晶系,该晶系具有9个独立的弹性常数,即C11C22C33C44C55C66C12C13C23。根据Born稳定性准则[28] ,有

    C11>0,C22>0,C33>0,C44>0,C55>0,C66>0,[C11+C22+C33+2(C12+C13+C23)]>0,(C11+C222C12)>0,(C11+C332C13)>0,(C22+C332C23)>0
    (3)

    图2图3给出了根据应力-应变关系计算得到的Cr2B3及其掺杂结构在不同压力下的弹性常数。上述所有结构在 0~150 GPa 的压力范围内均满足正交晶系的力学稳定性条件。将掺杂结构的弹性常数与 Cr2B3 比较发现,V 掺杂可使Cr2B3 的弹性常数 C11C22C33均增大。C11C22C33是表征材料在abc轴抗形变能力的参数,其值越大,抗形变能力越强。图2显示,随着压力的升高,Cr2B3晶体在abc轴上的抗形变能力逐渐增强。C44作为剪切弹性常数,其值越大,材料的剪切变形抗力越强。由图3可知,CrTiB3和CrVB3C44高于其他几种结构,这两种结构对应的剪切模量也高于其他几种结构,因此,CrTiB3和CrVB3具有更强的剪切变形抗力。

    图  2  Cr2B3的弹性常数随压力的变化
    Figure  2.  Pressure dependence of the elastic constants for Cr2B3
    图  3  CrMB3(M=Sc, Ti, V, Zr)的弹性常数随压力的变化
    Figure  3.  Pressure dependence of the elastic constants for CrMB3 (M=Sc, Ti, V, Zr)

    为判断Cr2B3的动力学稳定性,通过有限位移法分别计算了Cr2B3在零压和150 GPa 高压下的声子色散曲线,如图4所示。零压下,Cr2B3晶体的声子色散关系在整个布里渊区内未出现虚频,表明Cr2B3在零压下满足动力学稳定性;相比于零压,Cr2B3在150 GPa下的声子色散曲线的频率有一定的提高,但其在X附近表现出虚频,因而动力学不稳定。图5为CrScB3、CrTiB3、CrVB3 和 CrZrB3 在零压下的声子色散曲线,其中 CrVB3G 点出现微小虚频,CrScB3、CrTiB3 和 CrZrB3 出现了明显虚频,均不满足动力学稳定性。

    图  4  Cr2B3在零压(a)和 150 GPa (b)下的声子色散曲线
    Figure  4.  Phonon-dispersion curves of Cr2B3 at (a) 0 GPa and (b) 150 GPa
    图  5  (a) CrScB3、(b) CrTiB3、(c) CrVB3、(d) CrZrB3在零压下的声子色散曲线
    Figure  5.  Phonon-dispersion curves of (a) CrScB3, (b) CrTiB3, (c) CrVB3 and (d) CrZrB3 at 0 GPa

    根据弹性常数,可获得材料的体积弹性模量、剪切模量以及杨氏模量等力学参量。体积弹性模量B和剪切模量G采用Voigt-Reuss-Hill近似法计算[29], 杨氏模量E可由BG推导得出,计算公式如下

    BV=[C11+C22+C33+2(C12+C13+C23)]/9
    (4)
    BR=Δ[C11(C22+C332C23)+C22(C332C13)2C33C12+C12(2C23C12)+C13(2C12C13)+C23(2C13C23)]1
    (5)
    GV=[C11+C22+C33+3(C44+C55+C66)(C12+C13+C23)]/15,
    (6)
    GR=15{4[C11(C22+C33+C23)+C22(C33+C13)+C33C12C12(C23+C12)C13(C12+C13)C23(C13+C23)]/Δ+3[(1/C44)+(1/C55)+(1/C66)]}1
    (7)
    Δ=C13(C12C23C13C22)+C23(C12C13C23C11)+C33(C11C22C212)
    (8)
    B=(BV+BR)/2
    (9)
    G=(GV+GR)/2
    (10)
    E=9BG/(3B+G)
    (11)

    式中:BVBR为Voigt和Reuss模型的体积弹性模量,GVGR分别为Voigt剪切模量和Reuss剪切模量。图6为Cr2B3和CrMB3(M=Sc, Ti, V, Zr)的体积弹性模量、剪切模量和杨氏模量随压力的变化。可以看出,随着压力增加,Cr2B3及其掺杂结构的体积弹性模量、剪切模量、杨氏模量均增大。Cr2B3在整个压力范围内的体积弹性模量比其他4种结构更大。相比于零压下的Cr2B3,零压下CrVB3和CrTiB3的剪切模量分别提高14.3%和16.2%,杨氏模量分别提高8.2%和12.0%。

    图  6  Cr2B3和 CrMB3(M=Sc, Ti, V, Zr)的体积弹性模量(a)、剪切模量(b)和杨氏模量(c)随压力的变化
    Figure  6.  Pressure dependence of (a) the bulk moduli, (b) the shear moduli, (c) the Young’s moduli for Cr2B3 and CrMB3 (M=Sc, Ti, V, Zr)

    硬度是材料抵抗永久变形能力的量度,是材料的重要力学参数。Cr2B3及其掺杂结构的理论维氏硬度采用半经验模型[30]计算

    HV=2(k2G)0.5853,k=G/B
    (12)

    图7 为 Cr2B3 及其掺杂结构的维氏硬度随压力的变化曲线。可以看出,在研究的整个压力范围内,除压力超120 GPa的Zr 掺杂外,Sc、Ti、V和Zr元素的掺杂均使Cr2B3的维氏硬度有所提高。值得注意的是,Ti掺杂使Cr2B3的硬度从26.3 GPa提高至40.2 GPa,提高52.9%,达到超硬材料的标准。随着压力的增加,Cr2B3的硬度呈线性增加,但其硬度仍较低,150 GPa下仅为28.3 GPa,CrZrB3的硬度总体呈下降趋势, CrVB3的硬度在 37 GPa上下小幅波动,而CrScB3和CrTiB3 的硬度随着压力的增加发生明显的波动。在CrScB3的硬度随压力的变化曲线中,100 GPa时出现明显的波动,计算得到该点的形成能Ef为0.083 295 eV,为正值,不满足热力学稳定性,因此出现了力学性质异常。CrTiB3在零压下的维氏硬度明显高于其他压力下的硬度,达到超硬材料的标准,且在整个压力范围内,CrTiB3的硬度始终高于另外4种结构。总体看来,CrVB3同时具备较高的硬度以及较小的压力依赖性,是理想的硬质材料。

    图  7  Cr2B3和 CrMB3(M=Sc, Ti, V, Zr)的维氏硬度随压力的变化
    Figure  7.  Pressure dependence of the Vicker’s hardness for Cr2B3 and CrMB3 (M=Sc, Ti, V, Zr)

    Cr2B3的硬度随压力变化呈现出明显的规律性,因此针对Cr2B3在不同压力下的B―B键的键长及布居数做进一步计算,结果如表2所示。通常,键长越短,材料的硬度越高。表2显示,随着压力的升高,Cr2B3的3类B―B键,即B1―B1、B1―B2和B2―B3的键长均缩短。此外,还可通过布居数判断B―B共价键强弱(通常,正值表示共价键,正值越大,共价性越强),进而分析硬度随压力变化的原因。Cr2B3的B―B键的布居数随压力升高均增大,表明B―B键的共价性随压力的升高而增强,与Cr2B3的硬度随压力的变化趋势一致。

    表  2  Cr2B3中B―B键的键长以及布居数随压力的变化
    Table  2.  Pressure dependence of B―B bond length and population for Cr2B3
    Pressure/GPaBond length/Å Population
    B1―B1B1―B2B2―B3B1―B1B1―B2B2―B3
    01.695861.719711.75978 1.590.631.36
    251.661811.683551.723691.620.641.40
    501.634741.655591.694621.650.651.44
    751.612371.632141.670121.680.661.47
    1001.592981.612251.649311.700.671.50
    1251.575891.595061.630981.730.681.53
    1501.560581.579501.614421.750.691.56
    下载: 导出CSV 
    | 显示表格

    过渡金属元素的掺杂虽提高了Cr2B3的硬度,但同时使材料的韧性有所降低。根据Pugh规则[31],可以判断出固体的韧脆性。一般说来,当B/G小于1.75时,材料表现出脆性,反之则表现出韧性。图8给出了Cr2B3和CrMB3(M=Sc, Ti, V, Zr)的B/G随压力的变化。零压下,Cr2B3及其掺杂结构的B/G均小于1.75,表现出脆性,而掺杂结构的B/G比Cr2B3的更小,表现出更明显的脆性;Cr2B3和CrZrB3分别在65.0和93.7 GPa由脆性转变为韧性。

    图  8  Cr2B3及 CrMB3(M=Sc, Ti, V, Zr)的B/G 随压力的变化
    Figure  8.  Pressure dependence of the B/G for Cr2B3 and CrMB3 (M=Sc, Ti, V, Zr)

    图9图10图1112为零压下Cr2B3及其掺杂结构的体积弹性模量和杨氏模量在xyxzyz面的投影图。在yz平面上,Cr2B3及其掺杂结构的体积弹性模量的二维投影近似为圆形,表明材料的体积弹性模量在yz平面上呈各向同性;在xy平面和xz平面上,Cr2B3及其掺杂结构的体积弹性模量和杨氏模量的二维投影偏离圆形,表明材料的体积弹性模量和杨氏模量在xyxz平面上呈各向异性。掺杂结构与Cr2B3的体积弹性模量大致相同,说明掺杂对体积弹性模量的各向异性没有明显的影响。CrTiB3和CrVB3的杨氏模量在xz平面上的投影相比于Cr2B3仅出现微小变化,说明在xz平面上V和Ti元素的掺杂对杨氏模量各向异性的影响较小。

    图  9  零压下 Cr2B3的体积弹性模量的三维表示(a)及其在 xyxzyz 面上的投影(b)
    Figure  9.  (a) 3D representation and (b) 2D projections on xy, xz and yz planes of the bulk modulus for Cr2B3 at 0 GPa
    图  10  零压下 Cr2B3的杨氏模量的三维表示(a)及其在 xyxzyz 面上的投影(b)
    Figure  10.  (a) 3D representation and (b) 2D projections on xy, xz and yz planes of the Young’s modulus for Cr2B3 at 0 GPa
    图  11  零压下 CrMB3(M=Sc, Ti, V, Zr)的体积弹性模量在 xyxzyz 面的投影
    Figure  11.  2D projections of the bulk modulus for CrMB3 (M=Sc, Ti, V, Zr) on xy, xz and yz planes at 0 GPa
    图  12  零压下 CrMB3(M=Sc, Ti, V, Zr)的杨氏模量在 xyxzyz 面的投影
    Figure  12.  2D projections of the Young’s modulus for CrMB3 (M=Sc, Ti, V, Zr) on xy, xz and yz planes at 0 GPa

    电荷密度和态密度(density of states,DOS)可以用于揭示结构的电子性质。计算了零压下 Cr2B3及其掺杂结构的总态密度和分波态密度,如图1314所示,其中虚线所处位置为费米能级。在费米能级上,各结构的态密度值均大于零,表明所有结构都具有明显的金属性。通过态密度分析可以看出:对于Cr2B3,在−5.0~−3.4 eV区间,B-2p和Cr-3d具有相似形状的峰,出现杂化现象,说明Cr原子与B原子之间的化学键存在共价键成分,而在8.9~12.3 eV区间,B-2p与B-2s发生了强烈的杂化,使得Cr2B3具有较高的硬度;对于CrScB3,在2.3~3.2 eV区间,B-2p与Cr-3d发生杂化;对于CrTiB3,在−3.8~−2.5 eV区间,B-2p与Ti-3d 发生杂化;对于CrVB3,在−4.4~−3.0 eV区间,V-3d与B-2p 发生杂化;对于CrZrB3,在−3.4~−2.3 eV和1.5~3.0 eV区间,B-2p与Cr-3d以及Zr-4d出现了形状相似的峰,说明此处出现杂化现象。

    图  13  零压下 Cr2B3的总态密度以及分波态密度
    Figure  13.  Total density of states and partial density of states for Cr2B3 at 0 GPa
    图  14  零压下 CrMB3(M=Sc, Ti, V, Zr)的总态密度以及分波态密度
    Figure  14.  Total density of states and partial density of states for CrMB3 (M=Sc, Ti, V, Zr) at 0 GPa

    金属与非金属之间的B―M共价键有利于提高剪切模量,形成的M―M金属键将降低材料的剪切模量。为了揭示化学键合的性质与维氏硬度的关系,计算了Cr2B3和CrMB3(M=Sc, Ti, V, Zr)的电子局域函数(electronic local functions,ELF)[32],并选取了(100)平面和(00¯1)平面进行分析,结果如图15所示。图15中电荷高度局域位置用红色显示,表明该处存在强的共价键。对比Cr2B3及其掺杂结构在(100)面上的电荷局域分布情况,可以看出掺杂结构B―B之间的红色区域相较于Cr2B3均有所扩大。在(00¯1)晶面上,Cr2B3的电荷主要集中在B―B之间的连线上,而掺杂结构的B原子被红色区域包围,代表着电子集中在B原子的周围。材料的硬度往往与B―B 共价键的强弱相关。掺杂结构具有更强的B―B共价键,因而拥有更高的硬度。

    图  15  零压下(a) Cr2B3、(b) CrScB3、(c) CrTiB3、(d) CrVB3、(e) CrZrB3在(100)平面的 ELF 以及零压下(f) Cr2B3、(g) CrScB3、(h) CrTiB3、(i) CrVB3和(j) CrZrB3在(00¯1)平面的 ELF
    Figure  15.  Electronic local functions contours for (a) Cr2B3, (b) CrScB3, (c) CrTiB3, (d) CrVB3 and (e) CrZrB3 in plane (100) at 0 GPa, and electronic local functions contours for (f) Cr2B3, (g) CrScB3, (h) CrTiB3, (i) CrVB3 and (j) CrZrB3 in plane (00¯1) at 0 GPa

    利用第一性原理方法,对Cr2B3的生成焓,CrMB3(M=Sc, Ti, V, Zr)的形成能,以及他们的弹性常数、弹性模量和电子结构进行了详细的计算和讨论。结果表明,在零压下 Sc、Ti、V 和 Zr 元素的掺杂均使Cr2B3的维氏硬度有所提高。其中,CrTiB3的硬度达到40.2 GPa,为潜在的超硬材料。在 0~150 GPa 压力范围内,Cr2B3、CrVB3和CrZrB3的硬度随压力的变化趋势呈现一定的规律性:Cr2B3的硬度随压力的增加而单调增加;CrVB3的硬度受压力的影响很小,且相较于Cr2B3 具有更高的硬度;CrZrB3的硬度随压力的增加,总体呈下降趋势。Cr2B3的B―B键长随压力增大而缩短,同时布居数增大,表明Cr2B3的B―B共价键增强,导致Cr2B3 的硬度随压力的增加而增大。

  • [1]
    HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979.
    [2]
    WIERZBICKI T, HOO F, MICHELLE S. Damage assessment of cylinders due to impact and explosive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 215–241. doi: 10.1016/0734-743X(93)90094-N
    [3]
    于博丽, 冯根柱, 李世强, 等. 横向爆炸载荷下薄壁圆管的动态响应 [J]. 爆炸与冲击, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295

    YU B L, FENG G Z, LI S Q, et al. Dynamic response of thin-wall circular tubes under transverse blast loading [J]. Explosion and Shock Waves, 2019, 39(10): 103101. doi: 10.11883/bzycj-2018-0295
    [4]
    LI S Q, YU B L, KARAGIOZOVA D, et al. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading [J]. International Journal of Impact Engineering, 2019, 124: 48–60. doi: 10.1016/j.ijimpeng.2018.10.004
    [5]
    BROCHARD K, LE SOURNE H, BARRAS G. Extension of the string-on-foundation method to study the shock wave response of an immersed cylinder [J]. International Journal of Impact Engineering, 2018, 117: 138–152. doi: 10.1016/j.ijimpeng.2018.03.007
    [6]
    YUEN S C K, NURICK G N, BRINCKMANN H B, et al. Response of cylindrical shells to lateral blast load [J]. International Journal of Protective Structures, 2013, 4(3): 209–230. doi: 10.1260/2041-4196.4.3.209
    [7]
    KARAGIOZOVA D, YU T X, LU G, et al. Response of a circular metallic hollow beam to an impulsive loading [J]. Thin-Walled Structures, 2014, 80: 80–90. doi: 10.1016/j.tws.2014.02.021
    [8]
    WALTERS R M, JONES N. An approximate theoretical study of the dynamic plastic behavior of shells [J]. International Journal of Non-Linear Mechanics, 1972, 7(3): 255–273. doi: 10.1016/0020-7462(72)90049-2
    [9]
    WANG Y, QIAN X D, LIEW J Y R, et al. Impact of cement composite filled steel tubes: an experimental, numerical and theoretical treatise [J]. Thin-Walled Structures, 2015, 87: 76–88. doi: 10.1016/j.tws.2014.11.007
    [10]
    HALL I W, GUDEN M, CLAAR T D. Transverse and longitudinal crushing of aluminum-foam filled tubes [J]. Scripta Materialia, 2002, 46(7): 513–518. doi: 10.1016/S1359-6462(02)00024-6
    [11]
    WANG H W, WU C Q, ZHANG F R, et al. Experimental study of large-sized concrete filled steel tube columns under blast load [J]. Construction and Building Materials, 2017, 134: 131–141. doi: 10.1016/j.conbuildmat.2016.12.096
    [12]
    ZHANG F R, WU C Q, WANG H W, et al. Numerical simulation of concrete filled steel tube columns against blast loads [J]. Thin-Walled Structures, 2015, 92: 82–92. doi: 10.1016/j.tws.2015.02.020
    [13]
    YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82: 177–189. doi: 10.1016/j.jcsr.2013.01.005
    [14]
    邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能 [J]. 高压物理学报, 2020, 34(6): 065201.

    DENG X H, WANG D F. Anti-blast performance of ultra-high performance concrete-filled double steel tubes under close-in blast loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201.
    [15]
    COLE R H, WELLER R. Underwater explosions [J]. Physics Today, 1948, 1(6): 35. doi: 10.1063/1.3066176
    [16]
    KARAGIOZOVA D, NURICK G N, LANGDON G S. Behaviour of sandwich panels subject to intense air blasts–Part 2: numerical simulation [J]. Composite Structures, 2009, 91(4): 442–450. doi: 10.1016/j.compstruct.2009.04.010
    [17]
    刘志芳, 王军, 秦庆华. 横向冲击载荷下泡沫铝夹芯双圆管的吸能研究 [J]. 兵工学报, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024

    LIU Z F, WANG J, QIN Q H. Research on energy absorption of aluminum foam-filled double circular tubes under lateral impact loadings [J]. Acta Armamentarii, 2017, 38(11): 2259–2267. doi: 10.3969/j.issn.1000-1093.2017.11.024
    [18]
    余同希, 华云龙. 结构塑性动力学引论[M]. 合肥: 中国科学技术大学出版社, 1994: 88–89.

    YU T X, HUA Y L. Introduction to structural plasticity dynamics [M]. Hefei: University of Science and Technology of China Press, 1994: 88–89.
  • Relative Articles

    [1]ZHAO Yuxi, YUAN Haotian, WANG Xumin, ZHANG Zhifan. Protective Properties of Metal/CFRP Composite Laminates Subjected to Underwater Contact Explosion[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 065101. doi: 10.11858/gywlxb.20240801
    [2]YUAN Haotian, LIU Zhao, SUN Wenhao, ZHANG Zhifan. Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698
    [3]LIN Gaojian, GAO Wenpeng, CHEN Pengwan, SUN Weifu. Molecular Dynamics Study on Impact Resistance of Ag-PMMA Composite Films[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044205. doi: 10.11858/gywlxb.20230655
    [4]CHANG Lijun, HUANG Xingyuan, YUAN Shenglin, CAI Zhihua. Mechanical Properties and Failure Analysis of UHMWPE Fiber Composite Laminates under Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014102. doi: 10.11858/gywlxb.20220633
    [5]MI Hongfu, PENG Chong, ZHANG Xiaomei, WANG Yang, WANG Lili, YANG Xue, JIANG Xinsheng. Influence Factors of the Failure of Adjacent Pipeline under Explosion in Gas Compartment of Utility Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035202. doi: 10.11858/gywlxb.20210891
    [6]TAN Xueming, GUO Weiguo. High-Temperature and High-Speed Synchronous Ballistic Impact Test Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900
    [7]XIE Yue, HOU Hailiang, LI Dian. Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849
    [8]WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
    [9]LIU Ying, WANG Qinyu, YANG Bo, GUO Huili, CUI Xiaosheng, TAN Jianping. Effect of Hygrothermal Aging on Impact Performance of Flax Fiber-Reinforced Foam Sandwich Panels[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044102. doi: 10.11858/gywlxb.20220524
    [10]LI Xue, XIAO Lijun, SONG Weidong. Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701
    [11]SU Huaxiang, YI Weijian. Numerical Simulation Analysis of Impact Resistance of Reinforced Concrete Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014201. doi: 10.11858/gywlxb.20190772
    [12]ZHANG Yingjie, YAO Fen, LIU Shanshan, HAN Yang, LI Zhiqiang. Dynamic Response of Hollow Tempered Laminated Glass[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054101. doi: 10.11858/gywlxb.20200513
    [13]WU Mingyu, YAN Xiaopeng, GUO Zhangxin, CUI Junjie. Tensile Properties of Low Concentration Graphene Oxide Modified Epoxy Resin-Based Carbon Fiber Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 061301. doi: 10.11858/gywlxb.20200541
    [14]LI Wenwei, MEI Jie, HUANG Wei. Impulsive Resistance of the CFRP/Epoxy Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024101. doi: 10.11858/gywlxb.20190822
    [15]YAO Fen, ZHANG Yingjie, YAO Pengfei, HAN Yang, LI Zhiqiang. Impact Resistance of Symmetrical and Asymmetric Tempered Laminated Glass[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861
    [16]LI Wenwei, HUANG Wei. Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790
    [17]LIAO Binbin, ZHOU Jianwu, LIN Yuan, JIA Liyong, WANG Dongliang, HUA Zhengli, ZHENG Jinyang, GU Chaohua. Low-Velocity Impact Behavior and Damage Characteristics of CFRP Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699
    [18]LIU Qingqing, GUO Baoqiao, SHI Chen, CHEN Pengwan. Deformation of Carbon Fiber Laminates underExplosion Based on 3D-DIC[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064201. doi: 10.11858/gywlxb.20190739
    [19]ZHANG Lei, MA Xiaomin, LI Rujiang, LI Xin, WU Guiying. Anti-explosion Performance and Failure Mechanism of Fiber-Metal Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014202. doi: 10.11858/gywlxb.20180567
    [20]LIN Mou-Jin, MA Hong-Hao, SHEN Zhao-Wu, FAN Zhi-Qiang. Underwater Detonation Behavior of Aluminum Fiber Explosive[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 557-563. doi: 10.11858/gywlxb.2014.05.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(779) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return