Citation: | XIA Xiaoxu, NING Jianguo, LI Jian. Study on Motion Law of Prefabricated Fragment and Air Shock Wave under High Pressure Gas Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052301. doi: 10.11858/gywlxb.20210749 |
[1] |
MARCHAND K A, VARGAS M M, NIXON J D. The synergistic effects of combined blast and fragment loadings [R]. San Antonio, TX: Southwest Research Institute, 1992.
|
[2] |
NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. doi: 10.1016/j.ijimpeng.2009.02.008
|
[3] |
KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. doi: 10.1016/j.ijimpeng.2013.11.009
|
[4] |
LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579.
|
[5] |
曹兵, 何勇, 李向东. 破片与冲击波耦合作用下巡航导弹发动机毁伤实验研究 [J]. 火工品, 2009(5): 8–12. doi: 10.3969/j.issn.1003-1480.2009.05.003
CAO B, HE Y, LI X D. Experimental study on cruise missile engine damage under fragment shock wave coupling [J]. Initiators & Pyrotechnics, 2009(5): 8–12. doi: 10.3969/j.issn.1003-1480.2009.05.003
|
[6] |
张志倩, 赵太勇, 王昭滨, 等. 杀爆战斗部联合作用场的毁伤效能研究 [J]. 兵器装备工程学报, 2020, 41(1): 64–67.
ZHANG Z Q, ZHAO T Y, WANG Z B, et al. Study on damage effectiveness of combined action field of explosive warhead [J]. Journal of Ordnance Equipment Engineering, 2020, 41(1): 64–67.
|
[7] |
陈长海, 侯海量, 朱锡, 等. 破片式战斗部空中爆炸下冲击波与破片的耦合作用 [J]. 高压物理学报, 2018, 32(1): 148–156.
CHEN C H, HOU H L, ZHU X, et al. Coupling effect of shock wave and fragment under air explosion of fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 148–156.
|
[8] |
陈长海, 侯海量, 李万, 等. 破片式战斗部空中爆炸下冲击波与破片先后作用的临界爆距研究 [J]. 海军工程大学学报, 2018, 30(2): 18–23.
CHEN C H, HOU H L, LI W, et al. Study on critical detonation distance of shock wave and fragment under air explosion of fragment warhead [J]. Journal of Naval University of Engineering, 2018, 30(2): 18–23.
|
[9] |
龚超安, 陈智刚, 印立魁. 杀爆战斗部破片与冲击波运动规律研究 [J]. 弹箭与制导学报, 2016, 36(2): 33–36.
GONG C A, CHEN Z G, YIN L K. Research on the motion law of fragments and shock wave of explosive warhead [J]. Journal of Missile and Guidance, 2016, 36(2): 33–36.
|
[10] |
王庆. 舱室内爆下冲击波-破片耦合作用损伤评估方法研究 [D]. 太原: 中北大学, 2018: 30–41.
WANG Q. Study on damage assessment method of shock wave fragment coupling under cabin implosion [D]. Taiyuan: North University of China, 2018: 30–41.
|
[11] |
陈兴, 周兰伟, 李向东, 等. 破片式战斗部破片与冲击波相遇位置研究 [J]. 高压物理学报, 2018, 32(6): 76–84. doi: 10.11858/gywlxb.20180591
CHEN X, ZHOU L W, LI X D, et al. Study on the location of fragment and shock wave of fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 76–84. doi: 10.11858/gywlxb.20180591
|
[12] |
李茂, 朱锡, 侯海量, 等. 冲击波和高速破片对固支方板的联合作用数值模拟 [J]. 中国舰船研究, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009
LI M, ZHU X, HOU H L, et al. Numerical simulation of combined action of shock wave and high-speed fragment on clamped square plate [J]. Chinese Journal of Ship Research, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009
|
[13] |
郑红伟, 陈长海, 李茂, 等. 空爆冲击波对不同形状破片的绕流作用仿真分析 [J]. 舰船科学技术, 2019, 41(5): 31–36.
ZHENG H W, CHEN C H, LI M, et al. Simulation analysis of flow around fragments with different shapes by air blast shock wave [J]. Ship Science and Technology, 2019, 41(5): 31–36.
|
[14] |
郑红伟, 陈长海, 李茂, 等. 空爆冲击波对高速破片绕流效应的仿真 [J]. 舰船科学技术, 2019, 41(1): 33–38. doi: 10.3404/j.issn.1672-7649.2019.01.006
ZHENG H W, CHEN C H, LI M, et al. Simulation of the effect of air blast shock wave on the flow around high-speed fragments [J]. Ship Science and Technology, 2019, 41(1): 33–38. doi: 10.3404/j.issn.1672-7649.2019.01.006
|
[15] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009: 115–162.
|
[16] |
LIU L Q, LI X, SHEN Z J. Overcoming shock instability of the HLLE-type Riemann solvers [J]. Journal of Computational Physics, 2020, 418: 109628.
|
[17] |
YEE H C. Upwind and symmetric shock-capturing schemes: NASA-TM-89464 [R]. Moffett Field, CA: Ames Research Center, 1987.
|
[18] |
PANDOLFI M, D’AMBROSIO D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” pheno-menon [J]. Journal of Computational Physics, 2001, 166(2): 271–301. doi: 10.1006/jcph.2000.6652
|
[19] |
LEER B V. Towards the ultimate conservative difference scheme. V. a second-order sequel to Godunov’s method [J]. Journal of Computational Physics, 1979, 32(1): 101–136.
|
[20] |
SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for Euler equations: AIAA-1993-0068 [R]. Reston, VA: American Institute of Aeronautics and Astronautics, 1993.
|
[21] |
YEE H C, KLOPFER G H, MONTAGNE J L. High resolution shock capturing schemes for inviscid and viscous hypersonic flows [J]. Journal of Computational Physics, 1990, 88(1): 31–61. doi: 10.1016/0021-9991(90)90241-R
|
[22] |
奥尔连科 Л П. 爆炸物理学 [M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011: 457–459.
OРЛЕНКО Л П. Explosion physics [M]. 3rd ed. Translated by SUN C W. Beijing: Science Press, 2011: 457–459.
|
[23] |
AN Z T, WANG C, ZHEN J W, et al. Theoretical study on the action law of explosive fragments and shock wave of conventional ammunition [J]. Blasting, 2012, 29(1): 15–18.
|
[24] |
梁为民, 张晓忠, 梁仕发, 等. 结构内爆炸破片与冲击波运动规律试验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 223–227.
LIANG W M, ZHANG X Z, LIANG S F, et al. Experimental study on the motion law of explosive fragments and shock waves in structures [J]. Acta Armamentarii, 2009, 30(Suppl 2): 223–227.
|
[25] |
隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 279–283.
SUI S Y, WANG S S. Terminal effect [M]. Beijing: National Defense Industry Press, 2000: 279–283.
|