Citation: | WANG Jianan, WU Bao, HE Anmin, WU Fengchao, WANG Pei, WU Heng’an. Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747 |
[1] |
郑晓静. 关于极端力学 [J]. 力学学报, 2019, 51(4): 1266–1272. doi: 10.6052/0459-1879-19-189
ZHENG X J. Extreme mechanics [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266–1272. doi: 10.6052/0459-1879-19-189
|
[2] |
朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144.s
ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144.s
|
[3] |
SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. doi: 10.1063/1.1515125
|
[4] |
OGORODNIKOV V A, MIKHAĬLOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. doi: 10.1134/S1063776109090180
|
[5] |
张林, 李英华, 程晋明, 等. 激光驱动X光背光照相技术在金属靶微层裂研究中的应用探索 [J]. 强激光与粒子束, 2016, 28(4): 041003. doi: 10.11884/HPLPB201628.041003
ZHANG L, LI Y H, CHENG J M, et al. Exploration of laser-driven X-ray backlighting applied in research of micro-spalls of metal target [J]. High Power Laser and Particle Beams, 2016, 28(4): 041003. doi: 10.11884/HPLPB201628.041003
|
[6] |
BONTAZ-CARION J, PELLEGRINI Y P. X-ray microtomography analysis of dynamic damage in tantalum [J]. Advanced Engineering Materials, 2006, 8(6): 480–486. doi: 10.1002/adem.200600058
|
[7] |
ANDERSON W W, CVERNA F, HIXSON R S, et al. Phase transition and spall behavior in β-TiN [J]. AIP Conference Proceedings, 2000, 505(1): 443–446. doi: 10.1063/1.1307163
|
[8] |
HOLTKAMP D B, CLARK D A, FERM E N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [J]. AIP Conference Proceedings, 2004, 706: 477–482. doi: 10.1063/1.1780281
|
[9] |
KOLLER D D, HIXSON R S, GRAY Ⅲ C T, et al. Explosively driven shock induced damage in OFHC copper [J]. AIP Conference Proceedings, 2006, 845: 599–602. doi: 10.1063/1.2263393
|
[10] |
BECKER R, LEBLANC M M, CAZAMIAS J U. Characterization of recompressed spall in copper gas gun targets [J]. Journal of Applied Physics, 2007, 102(9): 093512. doi: 10.1063/1.2802589
|
[11] |
TURLEY W D, STEVENS G D, HIXSON R S, et al. Explosive-induced shock damage in copper and recompression of the damaged region [J]. Journal of Applied Physics, 2016, 120(8): 085904. doi: 10.1063/1.4962013
|
[12] |
ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead: SAND-76-0542 [R]. Albuquerque, USA: Sandia National Laboratories, 1976.
|
[13] |
ASAY J R. Effect of shock wave rise time on material ejection from aluminum surface: SAND-77-0731 [R]. Albuquerque, USA: Sandia National Laboratories, 1977.
|
[14] |
ASAY J R, BERTHOLF L D. A model for estimating the effects of surface roughness on mass ejection from shocked materials: SAND-78-1256 [R]. Albuquerque, USA: Sandia National Laboratories, 1978.
|
[15] |
VOGAN W S, ANDERSON W W, GROVER M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces [J]. Journal of Applied Physics, 2005, 98(11): 113508. doi: 10.1063/1.2132521
|
[16] |
文雪峰, 王健, 王晓燕, 等. 微喷射物质作用下脉冲信号电探针的放电机理 [J]. 爆炸与冲击, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06
WEN X F, WANG J, WANG X Y, et al. Discharging mechanism of pulse signal electric probe conducted by micro-jetting [J]. Explosion and Shock Waves, 2017, 37(5): 887–892. doi: 10.11883/1001-1455(2017)05-0887-06
|
[17] |
叶雁, 李军, 朱鹏飞, 等. 脉冲X光照相在微物质喷射诊断中的应用 [J]. 高压物理学报, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013
YE Y, LI J, ZHU P F, et al. Flash X-ray radiography for diagnosing the ejecta from shocked metal surface [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 398–402. doi: 10.11858/gywlxb.2013.03.013
|
[18] |
ZELLNER M B, VUNNI G B. Photon doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97. doi: 10.1016/j.proeng.2013.05.012
|
[19] |
FRANZKOWIAK J E, PRUDHOMME G, MERCIER P, et al. PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment [J]. Review of Scientific Instruments, 2018, 89(3): 033901. doi: 10.1063/1.4997365
|
[20] |
汪伟, 李作友, 李欣竹, 等. 用超高速阴影摄影技术研究微喷射现象 [J]. 应用光学, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
WANG W, LI Z Y, LI X Z, et al. Study on micro-jet on ultra-high speed shadow photography [J]. Journal of Applied Optics, 2008, 29(4): 526–529. doi: 10.3969/j.issn.1002-2082.2008.04.010
|
[21] |
叶雁, 汪伟, 李作友, 等. 用高速摄影和脉冲同轴全息照相联合诊断微射流 [J]. 高压物理学报, 2009, 23(6): 471–475. doi: 10.11858/gywlxb.2009.06.012
YE Y, WANG W, LI Z Y, et al. High-speed photography and pulsed in-line holography diagnostics of microjet [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 471–475. doi: 10.11858/gywlxb.2009.06.012
|
[22] |
MCMILLAN C, WHIPKEY R. Holographic measurement of ejecta from shocked metal surfaces [C]//Proceedings of SPIE 1032, 18th International Congress on High Speed Photography and Photonics. Xi’an, Shaanxi: SPIE, 1989: 553.
|
[23] |
邵建立, 何安民, 王裴. 微喷射现象数值模拟研究进展概述 [J]. 高压物理学报, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786
SHAO J L, HE A M, WANG P. Brief review of research progress on numerical simulation of ejection phenomena [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030110. doi: 10.11858/gywlxb.20190786
|
[24] |
周洪强, 张凤国, 潘昊, 等. 材料层裂研究的主要进展 [J]. 高压物理学报, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
ZHOU H Q, ZHANG F G, PAN H, et al. Main progress in research on material spalling [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
|
[25] |
邓小良, 李博, 汤观晴, 等. 分子动力学方法在金属材料动态响应研究中的应用 [J]. 高压物理学报, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
DENG X L, LI B, TANG G Q, et al. Application of molecular dynamics simulation to dynamic response of metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
|
[26] |
BUTTLER W T, WILLIAMS R J R, NAJJAR F M. Foreword to the special issue on ejecta [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 151–155. doi: 10.1007/s40870-017-0120-8
|
[27] |
王裴, 何安民, 邵建立, 等. 强冲击作用下金属界面物质喷射与混合问题数值模拟和理论研究 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094608.
WANG P, HE A M, SHAO J L, et al. Numerical and theoretical investigations of shock-induced material ejection and ejecta-gas mixing [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 094608.
|
[28] |
GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
|
[29] |
HOLIAN B L, LOMDAHL P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science, 1998, 280(5372): 2085–2088. doi: 10.1126/SCIENCE.280.5372.2085
|
[30] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
|
[31] |
SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
|
[32] |
LUO S N, GERMANN T C, TONKS D L. Spall damage of copper under supported and decaying shock loading [J]. Journal of Applied Physics, 2009, 106(12): 123518. doi: 10.1063/1.3271414
|
[33] |
XIANG M Z, CHEN J, SU R. Spalling behaviors of Pb induced by ramp-wave-loading: effects of the loading rise time studied by molecular dynamics simulations [J]. Computational Materials Science, 2016, 117: 370–379. doi: 10.1016/j.commatsci.2016.02.004
|
[34] |
XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
|
[35] |
LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
|
[36] |
SHAO J L, WANG P, HE A M, et al. Molecular dynamics study on the failure modes of aluminium under decaying shock loading [J]. Journal of Applied Physics, 2013, 113(16): 163507. doi: 10.1063/1.4802671
|
[37] |
SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
|
[38] |
SHAO J L, WANG P, HE A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics study [J]. Journal of Applied Physics, 2013, 114(17): 173501. doi: 10.1063/1.4828709
|
[39] |
BRINGAE M, CARO A, WANG Y M, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
|
[40] |
LUO S N, GERMANN T C, DESAI T G, et al. Anisotropic shock response of columnar nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 107(12): 123507. doi: 10.1063/1.3437654
|
[41] |
DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al. Atomic scale studies of spall behavior in nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 108(11): 113518. doi: 10.1063/1.3517827
|
[42] |
MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
|
[43] |
XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
|
[44] |
LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum [J]. Mechanics of Materials, 2015, 84: 12–27. doi: 10.1016/j.mechmat.2015.01.007
|
[45] |
DÁVILA L P, ERHART P, BRINGA E M, et al. Atomistic modeling of shock-induced void collapse in copper [J]. Applied Physics Letters, 2005, 86(16): 161902. doi: 10.1063/1.1906307
|
[46] |
ZHU W J, SONG Z F, DENG X L, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Physical Review B, 2007, 75(2): 024104. doi: 10.1103/PhysRevB.75.024104
|
[47] |
CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PHYSREVB.78.024115
|
[48] |
DENG X L, ZHU W J, ZHANG Y L, et al. Configuration effect on coalescence of voids in single-crystal copper under shock loading [J]. Computational Materials Science, 2010, 50(1): 234–238. doi: 10.1016/j.commatsci.2010.08.008
|
[49] |
ZHAO F P, AN Q, LI B, et al. Shock response of a model structured nanofoam of Cu [J]. Journal of Applied Physics, 2013, 113(6): 063516. doi: 10.1063/1.4791758
|
[50] |
ZHAO F P, WU H A, LUO S N. Microstructure effects on shock response of Cu nanofoams [J]. Journal of Applied Physics, 2013, 114(7): 073501. doi: 10.1063/1.4818487
|
[51] |
WANG H Y, LI X S, ZHU W J, et al. Atomistic modelling of the plastic deformation of helium bubbles and voids in aluminium under shock compression [J]. Radiation Effects and Defects in Solids, 2014, 169(2): 109–116. doi: 10.1080/10420150.2013.848449
|
[52] |
SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. doi: 10.1088/0965-0393/22/2/025012
|
[53] |
LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
|
[54] |
ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
|
[55] |
FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
|
[56] |
WANG J N, WU F C, ZHU Y, et al. Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves [J]. Computational Materials Science, 2019, 156: 404–410. doi: 10.1016/j.commatsci.2018.10.018
|
[57] |
DE RESSÉGUIER T, PRUDHOMME G, ROLAND C, et al. Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves [J]. Journal of Applied Physics, 2018, 124(6): 065106. doi: 10.1063/1.5040304
|
[58] |
SHAO J L, WANG P, HE A M, et al. Atomistic simulations of shock-induced microjet from a grooved aluminium surface [J]. Journal of Applied Physics, 2013, 113(15): 153501. doi: 10.1063/1.4801800
|
[59] |
WU B, WU F C, ZHU Y B, et al. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks [J]. AIP Advances, 2018, 8(4): 045002. doi: 10.1063/1.5021671
|
[60] |
LI B, ZHAO F P, WU H A, et al. Microstructure effects on shock-induced surface jetting [J]. Journal of Applied Physics, 2014, 115(7): 073504. doi: 10.1063/1.4865798
|
[61] |
DURAND O, SOULARD L. A new method for large scale molecular dynamics simulations of shock-induced ejecta production [J]. AIP Conference Proceedings, 2012, 1426(1): 1247–1250. doi: 10.1063/1.3686506
|
[62] |
DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
|
[63] |
DURAND O, SOULARD L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method [J]. Journal of Applied Physics, 2012, 111(4): 044901. doi: 10.1063/1.3684978
|
[64] |
DURAND O, SOULARD L. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations [J]. Journal of Applied Physics, 2015, 117(16): 165903. doi: 10.1063/1.4918537
|
[65] |
HE A M, WANG P, SHAO J L. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove [J]. Computational Materials Science, 2015, 98: 271–277. doi: 10.1016/j.commatsci.2014.11.020
|
[66] |
HE A M, WANG P, SHAO J L, et al. Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading [J]. Chinese Physics B, 2014, 23(4): 047102. doi: 10.1088/1674-1056/23/4/047102
|
[67] |
HE A M, WANG P, SHAO J L. Statistically heterogeneous size distribution of ejecta from shock-loaded Cu with a wedged surface groove [J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2): 025002. doi: 10.1088/0965-0393/24/2/025002
|
[68] |
WU F C, ZHU Y B, LI X Z, et al. Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas [J]. Journal of Applied Physics, 2019, 125(18): 185901. doi: 10.1063/1.5086542
|
[69] |
WU B, WU F C, WANG P, et al. Shock-induced ejecta transport and breakup in reactive gas [J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14857–14867. doi: 10.1039/D0CP01831G
|
[70] |
ORO D M, HAMMERBERG J E, BUTTLER W T, et al. A class of ejecta transport test problems [J]. AIP Conference Proceedings, 2012, 1426(1): 1351–1354. doi: 10.1063/1.3686531
|
[71] |
SORENSON D S, PAZUCHANICS P, JOHNSON R P, et al. Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line fraunhoferholography: LA-UR-14-24722 [R]. Los Alamos: Los Alamos National Laboratories, 2014.
|
[72] |
HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045902. doi: 10.1063/5.0011645
|
[73] |
JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337
|
[74] |
WANG J N, WU F C, WANG P, et al. Double-shock-induced spall and recompression processes in copper [J]. Journal of Applied Physics, 2020, 127(13): 135903. doi: 10.1063/1.5144567
|
[75] |
WANG L, CAI Y, HE A M, et al. Second yield via dislocation-induced premelting in copper [J]. Physical Review B, 2016, 93(17): 174106. doi: 10.1103/PHYSREVB.93.174106
|