Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
PEI Shenghai, DENG Qingyang, WANG Zenghui, XIA Juan. Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741
Citation: PEI Shenghai, DENG Qingyang, WANG Zenghui, XIA Juan. Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 030101. doi: 10.11858/gywlxb.20210741

Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures

doi: 10.11858/gywlxb.20210741
  • Received Date: 10 Mar 2021
  • Rev Recd Date: 11 Apr 2021
  • Pressure engineering, as an efficient, continuous and reversible method in tuning structure, electric and optical properties, has been extensively used in study of materials. Two-dimensional materials and vdWs heterostructures exhibit intriguing physical properties, thanks to their interlayer coupling, a unique degree of freedom. These interlayer-coupling-mediated properties are extremely sensitive to external perturbations, in particular external pressure, which can effectively tune interlayer spacing and thus modulate interlayer coupling strength. In this article, we review the responses to applied pressure in several representative two-dimensional materials (graphene, black phosphorus, h-BN, transition metal dichalcogenides and vdWs heterostructures). A plethora of phenomena are observed, including pressure-induced phase transition, structural instability, phonon dynamics, metallization, superconductivity etc. Opportunities in designing next-generation functional devices based on pressure engineering in these two-dimensional materials and heterostructures are also discussed.

     

  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [2]
    CHOW W L, YU P, LIU F C, et al. High mobility 2D palladium diselenide field-effect transistors with tunable Ambipolar characteristics [J]. Advanced Materials, 2017, 29(21): 1602969. doi: 10.1002/adma.201602969
    [3]
    BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets [J]. Science, 2007, 315(5811): 490–493. doi: 10.1126/science.1136836
    [4]
    NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353(6298): 9439. doi: 10.1126/science.aac9439
    [5]
    CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43–50. doi: 10.1038/nature26160
    [6]
    MAK K F, MCGILL K L, PARK J, et al. The valley Hall effect in MoS2 transistors [J]. Science, 2014, 344(6191): 1489–1492. doi: 10.1126/science.1250140
    [7]
    NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum Hall effect in graphene [J]. Science, 2007, 315(5817): 1379. doi: 10.1126/science.1137201
    [8]
    FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials [J]. Nature Nanotechnology, 2014, 9(10): 768–779. doi: 10.1038/nnano.2014.207
    [9]
    HUNT B, SANCHEZ-YAMAGISHI J D, YOUNG A F, et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure [J]. Science, 2013, 340(6139): 1427–1430. doi: 10.1126/science.1237240
    [10]
    XIA J, YAN J X, WANG Z H, et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers [J]. Nature Physics, 2021, 17(1): 92–98. doi: 10.1038/s41567-020-1005-7
    [11]
    KE F, CHEN Y B, YIN K T, et al. Large bandgap of pressurized trilayer graphene [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2019, 116(19): 9186–9190. doi: 10.1073/pnas.1820890116
    [12]
    NAYAK A P, BHATTACHARYYA S, ZHU J, et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide [J]. Nature Communications, 2014, 5(1): 3731. doi: 10.1038/ncomms4731
    [13]
    YANG L F, DAI L D, LI H P, et al. Characterization of the pressure-induced phase transition of metallization for MoTe2 under hydrostatic and non-hydrostatic conditions [J]. AIP Advanced, 2019, 9(6): 065104. doi: 10.1063/1.5097428
    [14]
    MAO H K, CHEN B, CHEN J H, et al. Recent advances in high-pressure science and technology [J]. Matter and Radiation at Extremes, 2016, 1(1): 59–75. doi: 10.1016/j.mre.2016.01.005
    [15]
    ZHAO D L, WANG M Y, XIAO G J, et al. Thinking about the development of high-pressure experimental chemistry [J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7297–7306. doi: 10.1021/acs.jpclett.0c02030
    [16]
    XIAO G J, GENG T, ZOU B, et al. Emerging functional materials under high pressure toward enhanced properties [J]. ACS Materials Letters, 2020, 2(9): 1233–1239. doi: 10.1021/acsmaterialslett.0c00329
    [17]
    LI G M, CHEN X B, GAN Y, et al. Raman spectroscopy evidence for dimerization and Mott collapse in α-RuCl3 under pressures [J]. Physical Review Materials, 2019, 3(2): 023601. doi: 10.1103/PhysRevMaterials.3.023601
    [18]
    DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene [J]. Nature Nanotechnology, 2008, 3(8): 491–495. doi: 10.1038/nnano.2008.199
    [19]
    GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849
    [20]
    LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996
    [21]
    LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
    [22]
    CLARK S M, JEON K J, CHEN J Y, et al. Few-layer graphene under high pressure: Raman and X-ray diffraction studies [J]. Solid State Communications, 2013, 154: 15–18. doi: 10.1016/j.ssc.2012.10.002
    [23]
    LU S C, YAO M G, YANG X G, et al. High pressure transformation of graphene nanoplates: a Raman study [J]. Chemical Physics Letters, 2013, 585: 101–106. doi: 10.1016/j.cplett.2013.08.085
    [24]
    MARTINS L G P, MATOS M J S, PASCHOAL A R, et al. Raman evidence for pressure-induced formation of diamondene [J]. Nature Communications, 2017, 8(1): 96. doi: 10.1038/s41467-017-00149-8
    [25]
    KE F, ZHANG L K, CHEN Y B, et al. Synthesis of atomically thin hexagonal diamond with compression [J]. Nano Letters, 2020, 20(8): 5916–5921. doi: 10.1021/acs.nanolett.0c01872
    [26]
    GAO Y, CAO T F, CELLINI F, et al. Ultrahard carbon film from epitaxial two-layer graphene [J]. Nature Nanotechnology, 2018, 13(2): 133–138. doi: 10.1038/s41565-017-0023-9
    [27]
    MUNOZ F, COLLADO H P O, USAJ G, et al. Bilayer graphene under pressure: electron-hole symmetry breaking, valley Hall effect, and Landau levels [J]. Physical Review B, 2016, 93(23): 235443. doi: 10.1103/PhysRevB.93.235443
    [28]
    NICOLLE J, MACHON D, PONCHARAL P, et al. Pressure-mediated doping in graphene [J]. Nano Letters, 2011, 11(9): 3564–3568. doi: 10.1021/nl201243c
    [29]
    CARR S, FANG S A, JARILLO-HERRERO P, et al. Pressure dependence of the magic twist angle in graphene superlattices [J]. Physical Review B, 2018, 98(8): 085144. doi: 10.1103/PhysRevB.98.085144
    [30]
    YANKOWITZ M, CHEN S W, POLSHYN H, et al. Tuning superconductivity in twisted bilayer graphene [J]. Science, 2019, 363(6431): 1059–1064. doi: 10.1126/science.aav1910
    [31]
    HUANG G Q, XING Z W. Superconductivity of bilayer phosphorene under interlayer compression [J]. Chinese Physics B, 2016, 25(2): 027402. doi: 10.1088/1674-1056/25/2/027402
    [32]
    TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus [J]. Physical Review B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319
    [33]
    LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033–4041. doi: 10.1021/nn501226z
    [34]
    GUPTA S N, SINGH A, PAL K, et al. Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: experiments and theory [J]. Physical Review B, 2017, 96(9): 094104. doi: 10.1103/PhysRevB.96.094104
    [35]
    SASAKI T, KONDO K, AKAHAMA Y, et al. Raman spectroscopy of two-dimensional material under high pressure: black phosphorus ultrathin film, phosphorene [J]. Japanese Journal of Applied Physics, 2017, 56(5S3): 05FB06. doi: 10.7567/JJAP.56.05FB06
    [36]
    AKHTAR M, ZHANG C Y, RAJAPAKSE M, et al. Bilayer phosphorene under high pressure: in situ Raman spectroscopy [J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7298–7304. doi: 10.1039/C9CP00816K
    [37]
    XIANG Z J, YE G J, SHANG C, et al. Pressure-induced electronic transition in black phosphorus [J]. Physical Review Letters, 2015, 115(18): 186403. doi: 10.1103/PhysRevLett.115.186403
    [38]
    GONG P L, LIU D Y, YANG K S, et al. Hydrostatic pressure induced three-dimensional Dirac semimetal in black phosphorus [J]. Physical Review B, 2016, 93(19): 195434. doi: 10.1103/PhysRevB.93.195434
    [39]
    GONG P L, DENG B, HUANG L F, et al. Robust and pristine topological Dirac semimetal phase in pressured two-dimensional black phosphorus [J]. The Journal of Physical Chemistry C, 2017, 121(38): 20931–20936. doi: 10.1021/acs.jpcc.7b08926
    [40]
    AKIBA K, MIYAKE A, AKAHAMA Y, et al. Two-carrier analyses of the transport properties of black phosphorus under pressure [J]. Physical Review B, 2017, 95(11): 115126. doi: 10.1103/PhysRevB.95.115126
    [41]
    LI C H, LONG Y J, ZHAO L X, et al. Pressure-induced topological phase transitions and strongly anisotropic magnetoresistance in bulk black phosphorus [J]. Physical Review B, 2017, 95(12): 125417. doi: 10.1103/PhysRevB.95.125417
    [42]
    KARUZAWA M, ISHIZUKA M, ENDO S. The pressure effect on the superconducting transition temperature of black phosphorus [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10759–10762. doi: 10.1088/0953-8984/14/44/372
    [43]
    MANJANATH A, SAMANTA A, PANDEY T, et al. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain [J]. Nanotechnology, 2015, 26(7): 075701. doi: 10.1088/0957-4484/26/7/075701
    [44]
    GUO J, WANG H H, VON ROHR F, et al. Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus [J]. Physical Review B, 2017, 96(22): 224513. doi: 10.1103/PhysRevB.96.224513
    [45]
    LI X, SUN J P, SHAHI P, et al. Pressure-induced phase transitions and superconductivity in a black phosphorus single crystal [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2018, 115(40): 9935–9940. doi: 10.1073/pnas.1810726115
    [46]
    SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz [J]. ACS Photonics, 2014, 1(4): 293–303. doi: 10.1021/ph4000983
    [47]
    BARBOZA A P M, MATOS M J S, CHACHAM H, et al. Compression-induced modification of boron nitride layers: a conductive two-dimensional BN compound [J]. ACS Nano, 2018, 12(6): 5866–5872. doi: 10.1021/acsnano.8b01911
    [48]
    MICHEL K H, VERBERCK B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride [J]. Physical Review B, 2009, 80(22): 224301. doi: 10.1103/PhysRevB.80.224301
    [49]
    DUERLOO K A N, REED E J. Flexural electromechanical coupling: a nanoscale emergent property of boron nitride bilayers [J]. Nano Letters, 2013, 13(4): 1681–1686. doi: 10.1021/nl4001635
    [50]
    SEGURA A, CUSCÓ R, TANIGUCHI T, et al. High-pressure softening of the out-of-plane A2u (transverse-optic) mode of hexagonal boron nitride induced by dynamical buckling [J]. The Journal of Physical Chemistry C, 2019, 123(28): 17491–17497. doi: 10.1021/acs.jpcc.9b04582
    [51]
    MENG Y, MAO H K, ENG P J, et al. The formation of sp3 bonding in compressed BN [J]. Nature Materials, 2004, 3(2): 111–114. doi: 10.1038/nmat1060
    [52]
    KÜRKÇÜ C, YAMÇIÇIER Ç. Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure [J]. Solid State Communications, 2019: 303–304. doi: 10.1016/j.ssc.2019.113740
    [53]
    JI C, LEVITAS V I, ZHU H Y, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure [J]. Proceedings of the National Academy of the Sciences of the United States of America, 2012, 109(47): 19108–19112. doi: 10.1073/pnas.1214976109
    [54]
    HROMADOVÁ L, MARTOŇÁK R. Pressure-induced structural transitions in BN from ab initio metadynamics [J]. Physical Review B, 2011, 84(22): 224108. doi: 10.1103/PhysRevB.84.224108
    [55]
    AN X H, SUN J H, LU Z B, et al. Pressure-induced insulator-semiconductor transition in bilayer hexagonal boron nitride [J]. Ceramics International, 2017, 43(8): 6626–6630. doi: 10.1016/j.ceramint.2017.02.037
    [56]
    XUE Y Z, WANG H, TAN Q H, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes [J]. ACS Nano, 2018, 12(7): 7127–7133. doi: 10.1021/acsnano.8b02970
    [57]
    BARBOZA A P M, CHACHAM H, OLIVEIRA C K, et al. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2 [J]. Nano Letters, 2012, 12(5): 2313–2317. doi: 10.1021/nl300183e
    [58]
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699–712. doi: 10.1038/nnano.2012.193
    [59]
    YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) [J]. Physical Review B, 2012, 85(3): 033305. doi: 10.1103/PhysRevB.85.033305
    [60]
    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors [J]. Nature Nanotechnology, 2011, 6(3): 147–150. doi: 10.1038/nnano.2010.279
    [61]
    ZHAO Z, ZHANG H J, YUAN H T, et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide [J]. Nature Communications, 2015, 6(1): 7312. doi: 10.1038/ncomms8312
    [62]
    CHENG X R, LI Y Y, SHANG J M, et al. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure [J]. Nano Research, 2018, 11(2): 855–863. doi: 10.1007/s12274-017-1696-y
    [63]
    DUWAL S, YOO C S. Shear-induced isostructural phase transition and metallization of layered tungsten disulfide under nonhydrostatic compression [J]. The Journal of Physical Chemistry C, 2016, 120(9): 5101–5107. doi: 10.1021/acs.jpcc.5b10759
    [64]
    SHEN P F, MA X, GUAN Z, et al. Linear tunability of the band gap and two-dimensional (2D) to three-dimensional (3D) isostructural transition in WSe2 under high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(46): 26019–26026. doi: 10.1021/acs.jpcc.7b10280
    [65]
    ZHOU Y H, CHEN X L, LI N N, et al. Pressure-induced Td to 1T′ structural phase transition in WTe2 [J]. AIP Advances, 2016, 6(7): 075008. doi: 10.1063/1.4959026
    [66]
    LU P C, KIM J S, YANG J, et al. Origin of superconductivity in the Weyl semimetal WTe2 under pressure [J]. Physical Review B, 2016, 94(22): 224512. doi: 10.1103/PhysRevB.94.224512
    [67]
    EKTARAWONG A, TSUPPAYAKORN-AEK P, BOVORNRATANARAKS T, et al. Effect of thermally excited lattice vibrations on the thermodynamic stability of tungsten ditellurides WTe2 under high pressure: a first-principles investigation [J]. Computational Materials Science, 2021, 186: 110024. doi: 10.1016/j.commatsci.2020.110024
    [68]
    ZHOU D W, ZHOU Y H, PU C Y, et al. Pressure-induced metallization and superconducting phase in ReS2 [J]. NPJ Quantum Materials, 2017, 2: 19. doi: 10.1038/s41535-017-0023-x
    [69]
    YAN Y L, JIN C L, WANG J, et al. Associated lattice and electronic structural evolutions in compressed multilayer ReS2 [J]. The Journal of Physical Chemistry Letters, 2017, 8(15): 3648–3655. doi: 10.1021/acs.jpclett.7b01031
    [70]
    DOU X M, DING K, JIANG D S, et al. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure [J]. ACS Nano, 2016, 10(1): 1619–1624. doi: 10.1021/acsnano.5b07273
    [71]
    CHI Z H, CHEN X L, YEN F. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure [J]. Physical Review Letters, 2018, 120(3): 037002. doi: 10.1103/PhysRevLett.120.037002
    [72]
    RIFLIKOVÁ M, MARTOŇÁK R, TOSATTI E. Pressure-induced gap closing and metallization of MoSe2 and MoTe2 [J]. Physical Review B, 2014, 90(3): 035108. doi: 10.1103/PhysRevB.90.035108
    [73]
    NAYAK A P, YUAN Z, CAO B X, et al. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide [J]. ACS Nano, 2015, 9(9): 9117–9123. doi: 10.1021/acsnano.5b03295
    [74]
    CAI P L, HU J, HE L P, et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study [J]. Physical Review Letters, 2015, 115(5): 057202. doi: 10.1103/PhysRevLett.115.057202
    [75]
    GUO Y Q, DENG H T, SUN X, et al. Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering [J]. Advanced Materials, 2017, 29(29): 1700715. doi: 10.1002/adma.201700715
    [76]
    WANG P, WANG Y G, QU J Y, et al. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide [J]. Physical Review B, 2018, 97(23): 235202. doi: 10.1103/PhysRevB.97.235202
    [77]
    NAYAK A P, PANDEY T, VOIRY D, et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide [J]. Nano Letters, 2015, 15(1): 346–353. doi: 10.1021/nl5036397
    [78]
    BANDARU N, KUMAR R S, SNEED D, et al. Effect of pressure and temperature on structural stability of MoS2 [J]. The Journal of Physical Chemistry C, 2014, 118(6): 3230–3235. doi: 10.1021/jp410167k
    [79]
    BANDARU N, KUMAR R S, BAKER J, et al. Structural stability of WS2 under high pressure [J]. International Journal of Modern Physics B, 2014, 28(25): 1450168. doi: 10.1142/S0217979214501689
    [80]
    HAN B, LI F F, LI L, et al. Correlatively dependent lattice and electronic structural evolutions in compressed monolayer tungsten disulfide [J]. The Journal of Physical Chemistry Letters, 2017, 8(5): 941–947. doi: 10.1021/acs.jpclett.7b00133
    [81]
    GONG Y B, ZHOU Q, HUANG X L, et al. Pressure-induced photoluminescence adjustment and lattice disorder in monolayer WSe2 [J]. ChemNanoMat, 2017, 3(4): 238–244. doi: 10.1002/cnma.201600346
    [82]
    MENG X H, PANDEY T, JEONG J, et al. Thermal conductivity enhancement in MoS2 under extreme strain [J]. Physical Review Letters, 2019, 122(15): 155901. doi: 10.1103/PhysRevLett.122.155901
    [83]
    XIA J, LI D F, ZHOU J D, et al. Pressure-induced phase transition in Weyl semimetallic WTe2 [J]. Small, 2017, 13(40): 1701887. doi: 10.1002/smll.201701887
    [84]
    TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling [J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252
    [85]
    DOU X M, DING K, JIANG D S, et al. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure [J]. ACS Nano, 2014, 8(7): 7458–7464. doi: 10.1021/nn502717d
    [86]
    FU L, WAN Y, TANG N, et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure [J]. Science Advances, 2017, 3(11): e1700162. doi: 10.1126/sciadv.1700162
    [87]
    YE Y X, DOU X M, DING K, et al. Pressure-induced K-Λ crossing in monolayer WSe2 [J]. Nanoscale, 2016, 8(20): 10843–10848. doi: 10.1039/C6NR02690G
    [88]
    OLIVA R, LAURIEN M, DYBALA F, et al. Pressure dependence of direct optical transitions in ReS2 and ReSe2 [J]. NPJ 2D Materials and Applications, 2019, 3(1): 20. doi: 10.1038/s41699-019-0102-x
    [89]
    FAN W, ZHU X, KE F, et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers [J]. Physical Review B, 2015, 92(24): 241408(R). doi: 10.1103/PhysRevB.92.241408
    [90]
    FU X P, LI F F, LIN J F, et al. Coupling-assisted renormalization of excitons and vibrations in compressed MoSe2-WSe2 heterostructure [J]. The Journal of Physical Chemistry C, 2018, 122(10): 5820–5828. doi: 10.1021/acs.jpcc.8b01453
    [91]
    PANDEY T, NAYAK A P, LIU J, et al. Pressure-induced charge transfer doping of monolayer graphene/MoS2 heterostructure [J]. Small, 2016, 12(30): 4063–4069. doi: 10.1002/smll.201600808
    [92]
    BARBOZA A P M, SOUZA A C R, MATOS M J S, et al. Graphene/h-BN heterostructures under pressure: from van der Waals to covalent [J]. Carbon, 2019, 155: 108–113. doi: 10.1016/j.carbon.2019.08.054
    [93]
    CHANTNGARM P, SOODCHOMSHOM B. Pressure control of charge and spin currents in graphene/MoS2 heterostructures [J]. Journal of Magnetism and Magnetic Materials, 2019, 473: 291–295. doi: 10.1016/j.jmmm.2018.10.047
    [94]
    MOAIED M, HONG J S. Tuning the magnetic properties of hydrogenated bilayer graphene and graphene/h-BN heterostructures by compressive pressures [J]. Carbon, 2018, 131: 266–274. doi: 10.1016/j.carbon.2018.01.102
    [95]
    JAKHAR M, SINGH J, KUMAR A, et al. Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure [J]. Nanotechnology, 2020, 31(14): 145710. doi: 10.1088/1361-6528/ab5de1
    [96]
    YANKOWITZ M, WATANABE K, TANIGUCHI T, et al. Pressure-induced commensurate stacking of graphene on boron nitride [J]. Nature Communications, 2016, 7(1): 13168. doi: 10.1038/ncomms13168
    [97]
    YANKOWITZ M, JUNG J, LAKSONO E, et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure [J]. Nature, 2018, 557(7705): 404–408. doi: 10.1038/s41586-018-0107-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(4185) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return