Citation: | CHEN Ming, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. Ballistic Performance Analysis and Gradient Optimization Design of Ceramic Ball and Metal Composite Armor[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054201. doi: 10.11858/gywlxb.20210739 |
[1] |
MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure (Part 2) [J]. Ceramics International, 2010, 36(7): 2117–2127. doi: 10.1016/j.ceramint.2010.05.022
|
[2] |
GOOCH W A. An overview of ceramic armor applications [C]//International Conference on Advanced Ceramics and Glasses PAC RIM Ⅳ. Maui, Hawaii, 2002.
|
[3] |
刘永强, 王进华, 吕娟, 等. 陶瓷球尺寸对金属基陶瓷球复合材料抗弹性能影响研究 [J]. 兵器材料科学与工程, 2018, 41(2): 80–84. doi: 10.14024/j.cnki.1004-244x.20180307.001
LIU Y Q, WANG J H, LÜ J, et al. Influence of ceramic ball size on ballistic performance of metal matrix ceramic ball composite [J]. Ordnance Material Science and Engineering, 2018, 41(2): 80–84. doi: 10.14024/j.cnki.1004-244x.20180307.001
|
[4] |
陈兴, 杨城笑, 严彪. 金属基陶瓷颗粒增强复合材料的制备方法 [J]. 上海有色金属, 2008, 29(1): 27–31. doi: 10.13258/j.cnki.snm.2008.01.002
CHEN X, YANG C X, YAN B. Preparation of composite reinforced with metal matrix ceramic particles [J]. Nonferrous Metal Materials and Engineering, 2008, 29(1): 27–31. doi: 10.13258/j.cnki.snm.2008.01.002
|
[5] |
LIU J, WU C Q, LI J, et al. Ceramic balls protected ultra-high performance concrete structure against projectile impact: a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 143–162. doi: 10.1016/j.ijimpeng.2018.11.006
|
[6] |
SHAO R, WU C, SU Y, et al. Experimental and numerical investigations of penetration resistance of ultra-high strength concrete protected with ceramic balls subjected to projectile impact [J]. Ceramics International, 2019, 36(4): 588–596. doi: 10.1016/j.ceramint.2019.01.110
|
[7] |
满蓬. 氧化铝基陶瓷复合装甲面板与背板的配置效应研究 [D]. 南京: 南京理工大学, 2012: 27−28.
MAN P. Study on the effect of configuration on front plate and back plate of ceramic composite armor based on Al2O3 [D]. Nanjing: Nanjing University of Science & Technology, 2012: 27−28.
|
[8] |
李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究 [D]. 南京: 南京航空航天大学, 2008: 51−53.
LI C. Studies on fabrication process and ballistic-resistance of corundum balls/aluminum alloy composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 51−53.
|
[9] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. doi: 10.1063/1.46199
|
[10] |
CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C]//4th European LS-DYNA Users Conference. Ulm, Germany, 2003: 47−60.
|
[11] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[12] |
侯二永. 陶瓷间隙靶抗12.7 mm穿甲燃烧弹机理及性能研究 [D]. 长沙: 国防科学技术大学, 2008: 13−17.
HOU E Y. Investigation of mechanism and performance of spaced ceramic target under impact of 12.7 mm armor piercing projectile [D]. Changsha: National University of Defense Technology, 2008: 13−17.
|
[13] |
曹杰, 葛建立, 王浩, 等. 蜂窝铝冲击波形数值计算及分析 [J]. 弹道学报, 2017, 29(4): 58–63. doi: CNKI:SUN:DDXB.0.2017-04-011
CAO J, GE J L, WANG H, et al. Numerical simulation on shock waveform of aluminum honeycombs [J]. Journal of Ballistics, 2017, 29(4): 58–63. doi: CNKI:SUN:DDXB.0.2017-04-011
|
[14] |
包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(12): 57–68. doi: CNKI:SUN:BZCJ.0.2019-12-006
BAO K, ZHANG X F, TAN M T, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet [J]. Explosion and Shock Waves, 2019, 39(12): 57–68. doi: CNKI:SUN:BZCJ.0.2019-12-006
|
[15] |
HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368–10376. doi: 10.1016/j.ceramint.2017.05.071
|