Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
SONG Chaohui, REN Huilan, LI Wei, HAO Li. Impact Compression Characteristics of Al/W Active Materials with Different W Additions[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738
Citation: SONG Chaohui, REN Huilan, LI Wei, HAO Li. Impact Compression Characteristics of Al/W Active Materials with Different W Additions[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064106. doi: 10.11858/gywlxb.20210738

Impact Compression Characteristics of Al/W Active Materials with Different W Additions

doi: 10.11858/gywlxb.20210738
  • Received Date: 09 Mar 2021
  • Rev Recd Date: 02 Apr 2021
  • In this paper, Al/W active materials with different W additions were prepared by molding and sintering processes. Based on the split Hopkinson pressure bar (SHPB) technology, copper sheets and rubber sheets were used for wave shaping, and dynamic compression and destruction characteristics of Al/W materials with different ratios were evaluated. The experimental results showed that with the increase of W additions, the pores and microcracks inside the Al/W material gradually increased. With different W additions, the dynamic compression deformation and failure characteristics of the Al/W material exhibited obvious differences. When the mass fractions of W are 44% and 64%, the stress-strain curves of Al/W under different strain rates exhibited elastic-plastic strengthening deformation characteristics, and the failure strain increased with the increase of strain rate. Al/W materials with a W mass fraction of 83% exhibited the strain softening characteristic in the plastic deformation stage. When the W mass fraction reached 91%, the Al/W material failed quickly after reaching the breaking strength, and the breaking strain is maintained at about 0.03. With the increase of W additions, the transformation of Al/W deformation mode is the result of the interaction between the reinforcing phase W and the internal defects of the material.

     

  • loading
  • [1]
    National Research Council, Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced energetic materials [M]. Washington: The National Academies Press, 2004: 20–23.
    [2]
    DUNBAR E, THADHANI N N, GRAHAM R A. High-pressure shock activation and mixing of nickel-aluminium powder mixtures [J]. Journal of Materials Science, 1993, 28(11): 2903–2914. doi: 10.1007/BF00354693
    [3]
    OLNEY K L, CHIU P H, LEE C W, et al. Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites [J]. Journal of Applied Physics, 2011, 110(11): 114908. doi: 10.1063/1.3665644
    [4]
    CHIU P H, NESTERENKO V F. Dynamic behavior and fracture of granular composite Al-W [C]//DYMAT 2009-9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2009: 947–953.
    [5]
    GUO L F, ZHANG Z M, LI B C, et al. Modeling the constitutive relationship of powder metallurgy Al-W alloy at elevated temperature [J]. Materials & Design, 2014, 64: 667–674. doi: 10.1016/j.matdes.2014.08.031
    [6]
    HUNT E M, PANTOYA M L. Impact sensitivity of intermetallic nanocomposites: a study on compositional and bulk density [J]. Intermetallics, 2010, 18(8): 1612–1616. doi: 10.1016/j.intermet.2010.04.015
    [7]
    TUCKER M D. Characterization of impact initiation of aluminum-based intermetallic-forming reactive materials [R]. Atlanta Botanical: Georgia Institute of Technology, 2011.
    [8]
    SHEMIRANI A B, NAGHDABADI R, ASHRAFI M J. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus [J]. Construction and Building Materials, 2016, 125: 326–336. doi: 10.1016/j.conbuildmat.2016.08.045
    [9]
    王扬卫, 于晓东, 王璀轶, 等. 准脆性SiCp/Al复合材料SHPB实验中入射波整形技术 [J]. 北京理工大学学报, 2010, 30(4): 488–491. doi: 10.15918/j.tbit1001-0645.2010.04.004

    WANG Y W, YU X D, WANG C Y, et al. Incidence pulse shaping techniques for testing quasi-Brittle SiCp/Al composites with SHPB [J]. Transactions of Beijing Institute of Technology, 2010, 30(4): 488–491. doi: 10.15918/j.tbit1001-0645.2010.04.004
    [10]
    SONG Z H, WANG Z H, KIM H, et al. Pulse shaper and dynamic compressive property investigation on ice using a large-sized modified split Hopkinson pressure bar [J]. Latin American Journal of Solids and Structures, 2016, 13(3): 391–406. doi: 10.1590/1679-78252458
    [11]
    YANG H, SONG H W, ZHANG S. Experimental investigation of the behavior of aramid fiber reinforced polymer confined concrete subjected to high strain-rate compression [J]. Construction and Building Materials, 2015, 95: 143–151. doi: 10.1016/j.conbuildmat.2015.07.084
    [12]
    CHEN X D, WU S X, ZHOU J K. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete [J]. Construction and Building Materials, 2013, 47: 419–430. doi: 10.1016/j.conbuildmat.2013.05.063
    [13]
    FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. doi: 10.1007/BF02411056
    [14]
    赵习金, 卢芳云, 王悟, 等. 入射波整形技术的实验和理论研究 [J]. 高压物理学报, 2004, 18(3): 231–236. doi: 10.11858/gywlxb.2004.03.007

    ZHAO X J, LU F Y, WANG W, et al. The experimental and theoretical study on the incident pulse shaping technique [J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231–236. doi: 10.11858/gywlxb.2004.03.007
    [15]
    ELLWOOD S, GRIFFITHS L J, PARRY D J. Materials testing at high constant strain rates [J]. Journal of Physics E: Scientific Instruments, 1982, 15(3): 280–282. doi: 10.1088/0022-3735/15/3/009
    [16]
    陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006

    TAO J L, TIAN C J, CHEN Y Z, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006
    [17]
    刘晓俊, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. doi: 10.11868/j.issn.1001-4381.2016.001212

    LIU X J, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. doi: 10.11868/j.issn.1001-4381.2016.001212
    [18]
    LU Y B, LI Q M. Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 1(3): 363–390. doi: 10.1260/2041-4196.1.3.363
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(740) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return