
Citation: | ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734 |
TC4钛合金是一种
大量的研究表明,鸟体在高速冲击作用下表现出明显的流体流动飞溅特性。近年来,诸多学者针对飞机结构的抗鸟撞性能开展了大量研究工作。普遍认为,高速鸟撞冲击问题是一个应变率相关的流固耦合问题。目前结构抗鸟撞性能的数值分析方法主要有3种:拉格朗日有限元法(Lagrangian finite element)、任意拉格朗日-欧拉法(Arbitrary Lagrange-Euler,ALE)和光滑粒子流体动力学方法(Smooth particle hydro-dynamic,SPH)。采用拉格朗日有限元法分析高速鸟撞冲击时,因鸟体结构变形大,致使单元发生畸变,故拉格朗日有限元法只适合模拟低速鸟撞。SPH方法是一种基于拉格朗日技术的自适应无网格粒子法,将其与有限元方法进行耦合,可在流固耦合问题求解中展现显著的优势[2-3]。由于SPH粒子在空间相互独立,因此SPH法比拉格朗日有限元法和ALE法更适于解决高速鸟撞冲击问题[4]。例如:刘军等[5]通过对比鸟撞平板叶片实验结果和SPH法及拉格朗日有限元法数值分析结果,发现SPH方法与实验结果更接近;刘富等[6]采用SPH方法进行了2024-T3铝合金平板抗高速鸟撞冲击性能研究,得到了与实验结果相近的模拟结果;Liu等[7]通过不同速度的平板鸟撞冲击实验和数值分析,研究了适用于不同鸟撞速度的鸟体模型;姚小虎等[8]通过鸟撞圆弧风挡实验和数值计算,分析了风挡玻璃在鸟撞冲击过程中的损伤破坏。
本研究采用三维图像相关法(3 dimensional digital correlate,3D-DIC),分析TC4钛合金平板高速鸟撞过程中的变形场,基于SPH方法和TC4钛合金的Johnson-Cook动态损伤模型,建立TC4钛合金平板鸟撞数值模型,并将模拟结果与鸟撞实验进行对比验证。
鸟撞实验装置由鸟弹发射系统、TC4钛合金靶板、速度测试系统、照明系统和高速摄像系统组成。实验装置如图1所示。本实验使用的鸟弹为长L = 228 mm、直径D = 114 mm的明胶弹。鸟弹由空气炮发射,利用激光测速仪记录发射速度,激光测速仪的系统误差小于0.5%。为了解析TC4钛合金靶板背面的三维变形场,在靶板背面设置两台I-SPEED 716型高速摄影机,拍摄帧率设置为104帧每秒。位于靶板正面的两台SA-X型高速摄影机记录鸟弹飞行轨迹和撞击靶板时的响应,保证鸟弹垂直撞击TC4钛合金靶板。实验开始之前,进行调焦、视场校准和同步设置。将4台高速摄影机的触发开关通过BNC线引至操作间,其中用于动态3D-DIC测量的两台相机使用转接头连接,以实现同步触发。高速摄影机布局如图2所示。
试件材料为TC4钛合金平板,尺寸为600 mm × 600 mm × 1.6 mm。通过均匀分布的16颗M10螺栓及4.0 mm厚的夹具,将试件固定在试验工装上,夹具尺寸与螺栓分布如图3所示。
鸟撞实验共设3个发射速度,分别为149、167和180 m/s。每组进行4次重复实验。图4显示了3种速度工况下鸟撞实验结果。图4中第1行的3幅图为平板正面高速摄影图像,可以看出:鸟弹包裹在弹托中由炮管发射,在空气阻力和实验舱入射口的作用下,鸟弹和弹托在撞击TC4钛合金平板前完全分离。弹托保证了鸟弹在发射过程中的整体形状和结构不受炮管内高压气体的破坏,弹托与鸟弹的完全分离消除了弹托对TC4平板鸟撞响应的影响。图4中第2行和第3行图像分别显示了TC4钛合金平板的正面和背面鸟撞冲击结果。发射速度为149 m/s的4次实验中,TC4钛合金平板均未发生破坏;发射速度为167 m/s的4次实验中,2次发生破坏,2次未发生破坏;而发射速度为180 m/s的4次实验中,平板均发生破坏。
图5为TC4钛合金平板破坏照片。鸟体撞击平板后产生的拉伸波向外传播,在螺栓处产生剪切作用,平板发生了剪切破坏。
数值计算采用的鸟体几何模型与实验相同,为两端半球状、中间圆柱体的胶囊状柱体,长径比L/D = 2,如图6所示。鸟体模型的质量为1.8 kg。采用SPH单元模拟高速鸟撞冲击过程中的鸟体流体状飞溅,鸟体材料参数列于表1。
Density/(kg·m−3) | Elastic modulus/GPa | Poisson’s ratio | Yield stress/MPa | Failure strain | Tangent modulus/MPa |
928 | 0.068 | 0.49 | 0.69 | 1.25 | 5 |
高速鸟撞实验过程中,靶板夹具和支撑架的刚度足够大,夹具和支撑架只发生线弹性变形,因此采用钢材的线弹性本构模型描述。TC4钛合金平板在高速鸟撞冲击载荷作用下发生了大变形和损伤破坏。实验发现,TC4钛合金平板的主要破坏形式是剪切破坏,因此在数值仿真计算中需要考虑剪应力的影响。大量实验表明,钛合金材料具有拉压不对称性,需要对von Mises屈服准则进行修正。本研究将Johnson-Cook动态本构模型和Johnson-Cook损伤失效模型引入邹学韬等[9]提出的von Mises修正本构框架中。该本构可以表征TC4钛合金在强冲击载荷作用下的塑性流动应力和损伤破坏行为。Johnson-Cook动态本构模型的表达式为
σs=(A+Bεn)(1+Cln˙ε∗)(1−T∗m) |
(1) |
式中:
考虑到TC4钛合金材料的拉压不对称性,引入拉压不对称因子
ϕ=f(σ)G(σ)=1 |
(2) |
f(σ)=3J/σ2s |
(3) |
G(σ)=exp[−c(ξ+1)]=1 |
(4) |
式中:
c=−2ln(σs√3τs)=−2lnα,α=σs√3τs |
(5) |
式中:
{dσij=De(dεij−dεpij)dεpij=dλ∂g∂σijdλ=g(σtrailij)+∂g∂˙εd˙ε∂g∂σijYij−∂g∂σpeqHYij=De3σ2sexp[2lnα(ξ+1)](∂J2∂σij+2J2lnα∂ξ∂σij)H=√23∂g∂σij∂g∂σij |
(6) |
式中:De为弹性矩阵,
Johnson-Cook损伤失效模型为
εf=[D1+D2exp(D3σ∗)](1+D4ln˙ε∗)(1+D5T∗) |
(7) |
式中:
数值计算所使用的本构模型参数列于表2[10-11],其中E为弹性模量,ρ为密度,μ为泊松比。
TC4钛合金平板高速鸟撞的数值计算有限元模型如图7所示。TC4靶板、夹具和M10螺栓均采用C3D8R六面体八节点减缩积分单元模拟。通过建立一般接触,计算鸟体撞击TC4钛合金靶板以及螺栓和靶板之间的接触。夹具通过16颗M10螺栓固定在支架上,在数值计算中对螺栓进行固支约束。鸟体速度分别设置为149、167和180 m/s。
在TC4钛合金平板上选取6个具有代表意义的观测点,如图8所示,其中观测点S1、S2和S3沿轴向分布,S4、S5和S6沿对角线方向分布。
图9为鸟撞速度为149 m/s时TC4钛合金平板的等效应力云图。鸟体撞击平板后,鸟体前端受到冲击压缩后解体并呈流体状飞溅,鸟体后端仍保持固体状态。平板受鸟体冲击后产生拉伸波,并向平板四周传播。1.66 ms时鸟体完全解体,鸟体撞击的冲击能量完全耗散,此时TC4钛合金平板的应力、应变和位移达到最大值,随后开始一定程度回弹。
图10为鸟撞击后TC4钛合金平板变形的数值计算结果和3D-DIC实验结果对比。图10中149 m/s和167 m/s工况下的最大位移(Smax)图像选自未破坏实验,180 m/s工况下的最大位移图像选自平板破坏飞出前(2.00 ms前)。鸟撞过程中,TC4钛合金平板的变形大,对角线方向隆起,隆起处亮度明显增大,使得平板部分区域被遮挡,同时也遮挡了高速摄影机,因此出现部分区域未追踪到变形场的问题。由图10可知,计算得到的最大位移场与实验结果吻合较好。3种工况下数值仿真和实验得到的观测点最大位移如表3所示。
Velocity/(m·s−1) | Method | Maximum displacement/mm | |||||
S1 | S2 | S3 | S4 | S5 | S6 | ||
149 | Sim. | 65 | 51 | 36 | 64 | 55 | 23 |
Exp. | 68 | 60 | 38 | 63 | 53 | 25 | |
167 | Sim. | 75 | 60 | 48 | 76 | 65 | 27 |
Exp. | 80 | 59 | 47 | 76 | 63 | 24 | |
180 | Sim. | 119 | 101 | 63 | 118 | 103 | 54 |
Exp. | 117 | 90 | 53 | 103 | 95 | 50 |
图11为计算得到的180 m/s工况下TC4钛合金平板破坏过程中的等效塑性应变云图。从图11可以看出:0.40 ms时,位于轴线上的4颗螺栓附近开始出现裂纹;0.68 ms时,平板与夹具接触处进入塑性阶段;1.04 ms时,平板对角线和夹具接触处开始起裂,并沿着夹具边缘和对角线方向扩展;2.00 ms时,最先起裂的4颗螺栓孔处裂纹贯穿。对比可见,计算得到的螺栓孔处的损伤和破坏形式与实验结果基本一致。
计算与实验得到的位移-时间曲线对比如图12所示。从图12中可以看出,计算得到的位移变化趋势及大小与实验结果基本吻合,表明本研究使用的Johnson-Cook动态本构和损伤失效模型对于模拟TC4钛合金高速鸟撞冲击问题是比较准确的。
图13对比了6个观测点的应变时程曲线。数值计算得到的6个观测点应变与实验数据的整体吻合度较高。从图13中可以看出,最靠近鸟撞点的观测点S1和S4的等效应变在0~0.2 ms内增大,0.2~1.0 ms内保持平稳,1.0~1.4 ms再次增大,1.4 ms后再次保持不变,呈现双台阶模式。其余观测点均未表现出此双台阶模式。观测点S1和S2的等效应变出现双台阶的原因在于这两个点位于鸟弹半径范围之内。鸟弹撞击TC4钛合金平板瞬间,应变瞬间增大;0.2~1.0 ms内应力波向边界传递并在边界处反向,此时S1和S2区域内材料包裹着鸟弹运动,因此应变出现平台段;1.0 ms时,边界反射的应力波再次到达S1和S2区域,使得应变再次增大。
通过3D-DIC实验和数值计算方法,研究了1.8 kg鸟体高速撞击1.6 mm厚TC4钛合金平板的动态响应和损伤破坏,得到了较精确、有效的有限元模型,并得到如下结论。
(1)1.6 mm厚的TC4钛合金在1.8 kg鸟体高速撞击下的临界破坏速度为167 m/s。撞击过程中平板内部未破坏,而螺栓和夹具处发生剪切破坏。
(2)3D-DIC测试技术能够比较准确地测定鸟撞冲击过程中TC4钛合金平板的变形场。高速冲击过程中平板的变形较大,易出现光线遮挡和反光,需要设置补充高速摄影机。
(3)实验表明,鸟撞冲击后TC4钛合金平板破坏主要为螺栓等边界处的剪切破坏。将修正的von Mises屈服准则引入Johnson-Cook动态本构和损伤模型中,在本构中同时考虑拉伸和剪切两种应力状态。该本构能够准确地模拟鸟撞平板问题。
[1] |
TAN H C, HUANG X, LIU L L, et al. Dynamic compressive behavior of four-step three-dimensional braided composites along three directions [J]. International Journal of Impact Engineering, 2019, 134: 103366. doi: 10.1016/j.ijimpeng.2019.103366
|
[2] |
朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素 [J]. 复合材料学报, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004
ZHU W M, LI G, YANG X P, et al. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites [J]. Acta Materiae Compositae Sinica, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004
|
[3] |
GRIFFITHS L J, MARTIN D J. A study of the dynamic behaviour of a carbon-fibre composite using the split Hopkinson pressure bar [J]. Journal of Physics D: Applied Physics, 1974, 7(17): 2329–2341. doi: 10.1088/0022-3727/7/17/308
|
[4] |
TAY T E, ANG H G, SHIM V P W. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy [J]. Composite Structures, 1995, 33(4): 201–210. doi: 10.1016/0263-8223(95)00116-6
|
[5] |
NAIK N K, KAVALA V R. High strain rate behavior of woven fabric composites under compressive loading [J]. Materials Science and Engineering: A, 2008, 474(1/2): 301–311. doi: 10.1016/j.msea.2007.05.032
|
[6] |
KOERBER H, CAMANHO P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in longitudinal compression [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 462–470. doi: 10.1016/j.compositesa.2011.01.002
|
[7] |
PLOECKL M, KUHN P, GROSSER J, et al. A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites [J]. Composite Structures, 2017, 180: 429–438. doi: 10.1016/j.compstruct.2017.08.048
|
[8] |
HSIAO H M, DANIEL I M. Strain rate behavior of composite materials [J]. Composites Part B: Engineering, 1998, 29(5): 521–533. doi: 10.1016/S1359-8368(98)00008-0
|
[9] |
TARFAOUI M, CHOUKRI S, NEME A. Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings [J]. Composites Science and Technology, 2008, 68(2): 477–485. doi: 10.1016/j.compscitech.2007.06.014
|
[10] |
SONG B, CHEN W N, WEERASOORIYA T. Quasi-static and dynamic compressive behaviors of a S-2 glass/SC15 composite [J]. Journal of Composite Materials, 2003, 37(19): 1723–1743. doi: 10.1177/002199803035189
|
[11] |
许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究 [J]. 实验力学, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005
XU S H, WANG X J, ZHANG G M, et al. Experimental investigation on the dynamic compression properties of kevlar fiber-rainforced composite laminates [J]. Journal of Experimental Mechanics, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005
|
[12] |
沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究 [J]. 复合材料学报, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026
SHEN L Y, LI Y C, WANG Z H, et al. Experimental and theoretical research on the dynamic properties of 3D orthogonal woven E-glass fiber/epoxy composites [J]. Acta Materiae Compositae Sinica, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026
|
[13] |
HU J X, YIN S, YU T X, et al. Dynamic compressive behavior of woven flax-epoxy-laminated composites [J]. International Journal of Impact Engineering, 2018, 117: 63–74. doi: 10.1016/j.ijimpeng.2018.03.004
|
[14] |
CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK [J]. Composites Part B: Engineering, 2018, 136: 187–196. doi: 10.1016/j.compositesb.2017.10.031
|
[15] |
阮班超, 史同亚, 王永刚. E玻璃纤维增强环氧树脂基复合材料轴向拉伸力学性能的应变率效应 [J]. 复合材料学报, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007
RUAN B C, SHI T Y, WANG Y G. Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites [J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007
|
[16] |
FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312–324. doi: 10.1016/j.compstruct.2014.12.053
|
[17] |
冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论 [J]. 工程力学, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192
FENG P, QIANG H L, YE L P. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192
|
[18] |
ARBAOUI J, TARFAOUI M, EL MALKI ALAOUI A. Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2016, 87: 44–54. doi: 10.1016/j.ijimpeng.2015.06.026
|
[19] |
MOSTAPHA T. Experimental investigation of dynamic compression and damage kinetics of glass/epoxy laminated composites under high strain rate compression [M]//ATTAF B. Advances in Composite Materials-Ecodesign and Analysis. Rijeka: IntechOpen, 2011.
|
[20] |
王严培, 姜启帆, 李玉龙. 基于Hopkinson杆试验技术的PA-GF50复合材料动态力学行为 [J]. 兵工学报, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018
WANG Y P, JIANG Q F, LI Y L. Dynamic mechanical behaviors of a short-glass-fiber reinforced polyamide in Hopkinson bar test [J]. Acta Armamentarii, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018
|
[21] |
NAIK N K, SHANKAR P J, KAVALA V R, et al. High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies [J]. Materials Science and Engineering: A, 2011, 528(3): 846–854. doi: 10.1016/j.msea.2010.10.099
|
[22] |
REIS V L, OPELT C V, CÂNDIDO G M, et al. Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates [J]. Composite Structures, 2018, 203: 952–959. doi: 10.1016/j.compstruct.2018.06.016
|
[23] |
RAVIKUMAR G, POTHNIS J R, JOSHI M, et al. Analytical and experimental studies on mechanical behavior of composites under high strain rate compressive loading [J]. Materials & Design, 2013, 44: 246–255. doi: 10.1016/j.matdes.2012.07.040
|
[1] | WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251037 |
[2] | YANG Xiangyang, WU Dun, ZHU Youlin, LI Junguo, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang. Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786 |
[3] | CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663 |
[4] | WANG Jianan, WU Bao, HE Anmin, WU Fengchao, WANG Pei, WU Heng’an. Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747 |
[5] | CHONG Tao, TANG Zhiping, TAN Fuli, WANG Guiji, ZHAO Jianheng. Numerical Simulation of Phase Transition and Spall of Iron[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102. doi: 10.11858/gywlxb.20170528 |
[6] | YU Chao, REN Hui-Lan, NING Jian-Guo. Molecular Dynamic Simulation on Shock Plasticity Behaviour of Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 211-215. doi: 10.11858/gywlxb.2013.02.007 |
[7] | LI Qing-Zhong, CHEN Yong-Tao, HU Hai-Bo, XU Yong-Bo. Experimental Study on Phase Transition and Spall Fracture in FeMnNi Alloy under Shock Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 107-112 . doi: 10.11858/gywlxb.2010.02.005 |
[8] | CHEN Yong-Tao, LI Qing-Zhong, TANG Xiao-Jun, LU Qiu-Hong. Study on Phase Transition and Spallation of Pure Iron under Given Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 213-218 . doi: 10.11858/gywlxb.2010.03.009 |
[9] | LI Qing-Zhong, CHEN Yong-Tao, TANG Tie-Gang. Loading and Unloading Process, Phase Transition, and Spallation in FeMnNi Alloy under High Shock-Compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 117-122 . doi: 10.11858/gywlxb.2009.02.007 |
[10] | ZHOU Xiao-Ping, YANG Xiang-Dong, LIU Jin-Chao. Molecular Dynamics Simulation of Water under Superhigh Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 310-314 . doi: 10.11858/gywlxb.2009.04.012 |
[11] | ZHANG Gong-Mu, LIU Hai-Feng, DUAN Su-Qing. Melting Property of Mo at High Pressure from Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012 |
[12] | HUANG Wei-Jun, CUI Qi-Liang, BI Yan, ZHOU Qiang, ZOU Guang-Tian. Electrical Conductivity and X-Ray Diffraction Study of Iron under High Pressures[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 40-44 . doi: 10.11858/gywlxb.2007.01.007 |
[13] | HUANG Hai-Jun, CAI Ling-Cang, TIAN Xu. Does There Exist a Solid-Solid Transformation in Shocked Iron at around 200 GPa?[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 205-209 . doi: 10.11858/gywlxb.2007.02.015 |
[14] | CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017 |
[15] | SUN Yu-Xin, ZHANG Jin, LI Yong-Chi, HU Shi-Sheng, DONG Jie. Propagation of Stress wave and Spallation of Cylindrical Tube under External Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 319-324 . doi: 10.11858/gywlxb.2005.04.006 |
[16] | LI Xi-Jun, GONG Zi-Zheng, LIU Fu-Sheng, CAI Ling-Cang, JING Fu-Qian. A Problem in Measurements of High Pressure Melting Curve of Iron: Influence of Melting Mechanism on the Melting Temperature[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221-225 . doi: 10.11858/gywlxb.2001.03.009 |
[17] | DONG Yu-Bin, SU Lin-Xiang, CHEN Da-Nian, JING Fu-Qian, HAN Jun-Wan, FENG Jia-Bo. Numerical Simulation on the Spallation of a Steel Cylindrical Shell Imploded under Slipping Detonation[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 1-10 . doi: 10.11858/gywlxb.1989.01.001 |
[18] | HU Xiao-Mian. Crystal structure Stability Study by Molecular Dynamics Method with Variable Cell[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 132-142 . doi: 10.11858/gywlxb.1989.02.005 |
[19] | YU Wan-Rui, LIU Ge-San. Molecular Dynamic Investigation of Shock Waves in the Solid[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 73-78 . doi: 10.11858/gywlxb.1988.01.010 |
[20] | CHEN Dong-Quan, XIE Guo-Qiang. Molecular Dynamics Simulation of Polymorphous Transitions[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 50-57 . doi: 10.11858/gywlxb.1987.01.007 |
Density/(kg·m−3) | Elastic modulus/GPa | Poisson’s ratio | Yield stress/MPa | Failure strain | Tangent modulus/MPa |
928 | 0.068 | 0.49 | 0.69 | 1.25 | 5 |
Velocity/(m·s−1) | Method | Maximum displacement/mm | |||||
S1 | S2 | S3 | S4 | S5 | S6 | ||
149 | Sim. | 65 | 51 | 36 | 64 | 55 | 23 |
Exp. | 68 | 60 | 38 | 63 | 53 | 25 | |
167 | Sim. | 75 | 60 | 48 | 76 | 65 | 27 |
Exp. | 80 | 59 | 47 | 76 | 63 | 24 | |
180 | Sim. | 119 | 101 | 63 | 118 | 103 | 54 |
Exp. | 117 | 90 | 53 | 103 | 95 | 50 |
Density/(kg·m−3) | Elastic modulus/GPa | Poisson’s ratio | Yield stress/MPa | Failure strain | Tangent modulus/MPa |
928 | 0.068 | 0.49 | 0.69 | 1.25 | 5 |
ρ/(g·cm−3) | μ | Tm/K | A/MPa | B/MPa | n | C | m |
4.430 | 0.33 | 1 878 | 1060 | 1090 | 0.884 | 0.0117 | 1.1 |
E/GPa | ˙ε0/s−1 | D1 | D2 | D3 | D4 | D5 | |
135 | 4 × 10−4 | −0.090 | 0.270 | 0.480 | 0.014 | 3.870 |
Velocity/(m·s−1) | Method | Maximum displacement/mm | |||||
S1 | S2 | S3 | S4 | S5 | S6 | ||
149 | Sim. | 65 | 51 | 36 | 64 | 55 | 23 |
Exp. | 68 | 60 | 38 | 63 | 53 | 25 | |
167 | Sim. | 75 | 60 | 48 | 76 | 65 | 27 |
Exp. | 80 | 59 | 47 | 76 | 63 | 24 | |
180 | Sim. | 119 | 101 | 63 | 118 | 103 | 54 |
Exp. | 117 | 90 | 53 | 103 | 95 | 50 |