Citation: | ZHANG Luming, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730 |
[1] |
CHEN W P, FU Z Q, FANG S C, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy [J]. Materials & Design, 2013, 51: 854–860. doi: 10.1016/J.MATDES.2013.04.061
|
[2] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. doi: 10.1002/adem.200300567
|
[3] |
CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Materialia, 2011, 59(16): 6308–6317. doi: 10.1016/j.actamat.2011.06.041
|
[4] |
李天昕, 卢一平, 曹志强, 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57(1): 42–54. doi: 10.11900/0412.1961.2020.00293
LI T X, LU Y P, CAO Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metallurgica Sinica, 2021, 57(1): 42–54. doi: 10.11900/0412.1961.2020.00293
|
[5] |
LI J, FANG Q H, LIU B, et al. Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation [J]. RSC Advances, 2016, 6(80): 76409–76419. doi: 10.1039/C6RA16503F
|
[6] |
SHARMA A, BALASUBRAMANIAN G. Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading [J]. Intermetallics, 2017, 91: 31–34. doi: 10.1016/j.intermet.2017.08.004
|
[7] |
AFKHAM Y, BAHRAMYAN M, TAHERZADEH R, et al. Tensile properties of AlCrCoFeCuNi glassy alloys: a molecular dynamics simulation study [J]. Materials Science and Engineering: A, 2017, 698: 143–151. doi: 10.1016/j.msea.2017.05.057
|
[8] |
LI J, CHEN H T, LI S X, et al. Tuning the mechanical behavior of high-entropy alloys via controlling cooling rates [J]. Materials Science and Engineering: A, 2019, 760: 359–365. doi: 10.1016/j.msea.2019.06.017
|
[9] |
JIAN W R, XIE Z C, XU S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Materialia, 2020, 199: 352–369. doi: 10.1016/j.actamat.2020.08.044
|
[10] |
李春艳, 刘华, 刘波涛. 分子动力学模拟基本原理及研究进展 [J]. 广州化工, 2011, 39(4): 11–13. doi: 10.3969/j.issn.1001-9677.2011.04.004
LI C Y, LIU H, LIU B T. Development and methods of molecular dynamics simulation [J]. Guangzhou Chemical Industry, 2011, 39(4): 11–13. doi: 10.3969/j.issn.1001-9677.2011.04.004
|
[11] |
李健, 郭晓璇, 马胜国, 等. AlCrFeCuNi高熵合金力学性能的分子动力学模拟 [J]. 高压物理学报, 2020, 34(1): 011301. doi: 10.11858/gywlxb.20190762
LI J, GUO X X, MA S G, et al. Mechanical properties of AlCrFeCuNi high entropy alloy: a molecular dynamics study [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011301. doi: 10.11858/gywlxb.20190762
|
[12] |
FARKAS D, CARO A. Model interatomic potentials and lattice strain in a high-entropy alloy [J]. Journal of Materials Research, 2018, 33(19): 3218–3225. doi: 10.1557/jmr.2018.245
|
[13] |
李健. 五边形石墨烯/高熵合金力学性能的分子动力学研究[D]. 太原: 太原理工大学, 2019.
LI J. Mechanical properties of penta-graphene and high entropy alloy: a molecular dynamics study [D]. Taiyuan: Taiyuan University of Technology, 2019.
|
[14] |
HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. doi: 10.1021/j100303a014
|
[15] |
STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
|
[16] |
TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817–2829. doi: 10.2320/matertrans.46.2817
|
[17] |
MA S G, LIAW P K, GAO M C, et al. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer [J]. Journal of Alloys and Compounds, 2014, 604: 331–339. doi: 10.1016/j.jallcom.2014.03.050
|
[1] | SU Yongchao, NING Jianguo, XU Xiangzhao. Optimization Model and Visualization Simulation of Projectile Penetration into Concrete[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 025103. doi: 10.11858/gywlxb.20240811 |
[2] | JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606 |
[3] | REN Huilan, DU Yining, SONG Shuizhou. Deformation and Failure of Concrete Splitting Based on DIC Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044104. doi: 10.11858/gywlxb.20220509 |
[4] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[5] | CHEN Qidong, WANG Lixiao, LIU Xin, SHEN Yichen. Damage of 3D Random Aggregate Concrete under Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034203. doi: 10.11858/gywlxb.20190855 |
[6] | WANG Lixiao, CHEN Qidong, LIU Xin. Damage Evolution in Concrete Interfacial Transition Zone with Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833 |
[7] | QIANG Hongfu, SUN Xinya, WANG Guang, CHEN Fuzhen. Numerical Simulation of Penetration in Concrete Sheet Based on SPH Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634 |
[8] | ZHAO Fuqi, XU Peibao, WEN Heming. Influence of Specimen Size in SHPB Tests on Concrete[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014101. doi: 10.11858/gywlxb.20170532 |
[9] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[10] | LIU Hai-Feng, WU Ping. Dynamic Mechanical Behavior of Concrete with Different Sizes of Interface Transition Zone[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006 |
[11] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[12] | WANG Gang, XU Xiang-Zhao, ZHENG Kai. Experimental Investigation on the Concrete Damage Behaviorunder the Shaped-Charge Loading[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 277-285. doi: 10.11858/gywlxb.2016.04.003 |
[13] | LI Zhi-Wu, XU Jin-Yu, DAI Shuang-Tian, BAI Er-Lei, GAO Zhi-Gang. Experimental Study on Concrete Exposed to High Temperature under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 417-422. doi: 10.11858/gywlxb.2013.03.016 |
[14] | CHEN Xing-Ming, LIU Tong, XIAO Zheng-Xue. Numerical Simulation Study of Parameter Sensitivity Analysis on Concrete HJC Model[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313-318. doi: 10.11858/gywlxb.2012.03.011 |
[15] | ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen. The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15-22 . doi: 10.11858/gywlxb.2011.01.003 |
[16] | LIAN Bing, JIANG Jian-Wei, MEN Jian-Bing, WANG Shu-You. Simulation Analysis on Law of Penetration of Long-Rod Projectiles with High Speed into Concrete[J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 377-382 . doi: 10.11858/gywlxb.2010.05.010 |
[17] | ZHONG Wei-Zhou, SONG Shun-Cheng, ZHANG Fang-Ju, ZHANG Qing-Ping, HUANG Xi-Cheng, LI Si-Zhong, LU Yong-Gang. Research on Behavior of Composite Material Projectile Penetrate Concrete Target[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 75-80 . doi: 10.11858/gywlxb.2009.01.013 |
[18] | TIAN Zhan-Dong, LI Shou-Cang, DUAN Zhuo-Ping, ZHANG Zhen-Yu. Numerical Simulation of the Trace of Projectiles Penetrating Concrete[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 354-358 . doi: 10.11858/gywlxb.2007.04.004 |
[19] | WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen. Building of a Constitutive Model for Concrete under Dynamic Impact[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 337-344 . doi: 10.11858/gywlxb.2006.04.001 |
[20] | WANG Ke-Hui, CHU Zhe, ZHOU Gang, WANG Jin-Hai, ZHU Yu-Rong, MIN Tao, HAN Juan-Ni. Numerical Simulation and Experimental Study of Penetrator with Composite Structure Impacting Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 93-96 . doi: 10.11858/gywlxb.2005.01.016 |