
Citation: | WANG Kun, XIAO Shifang, ZHU Wenjun, CHEN Jun, HU Wangyu. Progress on Atomic Simulations of Phase Transition of Iron under Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729 |
对物质施加一定范围的压力时,处于高压环境的物质致密度增加,在发生相变之前,虽然晶格被压缩,但是原子与原子之间的相对位置不发生改变,仍然以原来的晶体结构存在。当施加的压力更高时,晶格失稳,原子与原子之间不再保持原有的位置关系,原子发生重组,形成新的晶体结构,即发生压致相变[1-3]。从旧相失稳坍塌到新相形核生长,整个过程中物质所处的高压环境会阻碍原子的长程扩散,从而抑制新相晶粒长大,相对于常压或低压环境下的相变,压致相变过程通常会让物质的晶粒得到细化[4-6]。
物质发生压致相变时,在新相成核阶段,高压能够降低成核的激活能,促进成核;在新相生长阶段,高压可以提升原子的生长激活能,减缓相变过程中新相的生长速率,从而抑制新相晶粒的长大[4-10]。既然高压能够在物质相变过程中抑制新相晶粒的长大,让物质的晶粒得到细化,能否使这种晶粒细化效果得到累积?若要实现晶粒细化效果累积,需要使物质经历多次相变;若要使一种材料经历多次相变,一般需要让该材料在高压作用下发生可逆相变。
本研究将实现物质在升卸压过程中多次相变的实验方法称为往复压致相变法[11]。前期本课题组选用 Bi、Fe、Si 3种物质进行了往复压致相变实验[11],结果表明,往复压致相变法对Si有很好的晶粒细化效果。分析发现,Si可以在0~20 GPa的升卸压过程中发生可逆相变,在卸压过程中从高压相到常(低)压相的相变为扩散型相变。Fe同样能在0~20 GPa的升卸压过程中发生可逆相变,但整个过程中涉及到的相变均为位移型相变。据此推测,在往复压致相变过程中,如果存在扩散型相变,往复压致相变对物质的晶粒细化效果更明显。
根据现有的实验结论,推测能够发生可逆相变且在相变过程中涉及扩散型相变的物质能够在往复压致相变过程中实现明显的晶粒细化效果。为了验证该猜想,本研究选用与Si性质相似、同属第四主族的半导体材料Ge进行往复压致相变实验。如图1所示,Ge在常温常压下以立方相金刚石结构(DC Ge)存在,在8~12 GPa相变为金属相β-Sn结构(β-Sn Ge),卸压到8 GPa以下后会相变为亚稳相四方相ST12(ST12 Ge),ST12 Ge与β-Sn Ge之间的相变为可逆相变[12-16]。本研究将对Ge在高压下的往复压致相变过程中的晶粒细化规律以及相的演化行为进行研究。
选用直径为4 mm、高度为1 mm、晶向为<111>的金刚石结构锗(DC Ge)单晶圆片(纯度高于99.99%)作为初始样品,其晶体结构、X射线衍射(X-ray diffraction,XRD)谱及光学照片如图2所示。
采用四川大学研制的含有二级增压装置的6×8 MN六面顶压机进行实验[17-19]。如图3(a)和图3(b)所示,选用棱长为14 mm的掺钴氧化镁八面体作为传压介质,8个截角为8 mm的碳化钨硬质合金立方块作为二级增压装置产生高压,将初始样品放置在八面体的中心位置。腔体压力由Bi、ZnTe、ZnS等标定[20]。实验过程中,保持升、卸压速率一致,均为5 GPa/h,保压时间为10 min,最高压力为15 GPa,中间压力为7 GPa,详细的压力-时间(p-t)曲线如图3(c)所示。
在北京同步辐射装置4W2高压线站完成了Ge的高压原位轴向XRD实验,对Ge在往复相变过程中的相变行为和晶粒尺寸变化规律进行了研究。选用台面尺寸为500 μm的金刚石压砧(diamond anvil cell,DAC)进行实验,选择Re封垫,封垫的预压厚度约为20 μm,样品孔的直径为150 μm,无传压介质。实验过程中的腔体压力由Au和红宝石标定。X射线光斑尺寸为20 μm×30 μm。实验后,用Fit 2D对衍射图进行分析[21],用Peakfit对峰宽进行拟合。
利用6×8 MN六面顶压机,使块体单晶Ge样品在0~15 GPa经历多次往复压致相变,图4显示了经历3次和5次往复压致相变后所得样品和初始样品的扫描电子显微镜(scanning electron microscope,SEM)图像。从图4中可以看出:经历3次往复压致相变之后,初始单晶块体Ge的晶粒细化到几百纳米;经历5次往复压致相变之后,块体Ge的最细晶粒达到几十纳米,并且晶粒与晶粒之间结合紧密。这说明往复压致相变成功将块体Ge样品的晶粒细化。
经历5次往复压致相变后样品的XRD谱如图5所示。除ST12 Ge的衍射峰外,还观测到明显的GeO2的衍射峰,精修结果显示GeO2占1.4%。这应该是由于晶粒细化后,样品的比表面积增大,增加了其与空气中氧气的接触面积,致使样品表面发生氧化,从而间接验证了往复压致相变对晶粒的细化效应。
对往复5次升卸压过程的样品进行了透射电子显微镜(transmission electron microscope,TEM)测试,结果如图6所示。在往复5次升卸压的样品中观测到了非晶区域,对该区域进行选区电子衍射(selected area electron diffraction,SAED),得到了明显的非晶环(见图6(b));并且,在高分辨透射电子显微镜(high resolution transmission electron microscope,HRTEM)图像(图6(c))中没有观测到有序的晶格排列,对HRTEM图像进行反傅里叶变换(inverse Fourier transform,iFFT),如图6(d)所示,可以明显地观测到该区域内原子以长程无序状态排列,进一步验证了其非晶结构。
对样品在3~6次往复压致相变的电阻变化进行了原位测量。实验所用组装如图7(a)所示。采用四电极法对样品进行原位电阻测量,对样品施加恒定的电流,通过记录样品两端的电压变化来反映样品电阻的变化。对Ge施加压力至相变压力时,Ge将从半导体相转变为金属相,对应的电阻(电压)下降至接近零。
图7(b)显示了3~6次往复压致相变实验对应的原位电阻测量曲线,其中:C代表升压过程,D代表卸压过程,数字代表往复压致相变的次数。从图7(b)可以看出,随着往复压致相变次数的增加,样品相变为金属相所需的压力更高,从侧面印证了样品晶粒随着往复压致相变次数的增加而不断细化。轩园园[22] 的研究表明,随着样品粒径的减小,样品的比表面积急剧增大,从常(低)压相转变到高压相的势垒增大,导致相变压力随着粒径的减小而增大。该结论与本研究结果一致。
在原位电阻测量中,可以通过电阻的相对变化量反映相变的完成情况,即
x(t)=ΔR(t)/ΔRtot |
(1) |
式中:
x(t)=1−exp(−ktn) |
(2) |
式中:k为与激活能有关的常数,
n=ln[−ln(1−x)]/lnt |
(3) |
Avrami指数n是动力学研究中的一个重要参数,能够反映相变过程中的成核情况[23-25],不同相变类型的Avrami指数对应的成核情况不同。
3~6次往复压致相变过程对应的Avrami指数变化情况如图8所示,其中:短横线后面的C和D代表往复压致相变中的升压和卸压过程,如3CD-D表示第3次往复压致相变中的卸压过程。统计相同的压力区间内升卸压过程中Avrami指数的变化情况,结果表明:在升压过程中,Avrami指数由大变小;在卸压过程中,Avrami指数由小变大。同时还统计了升卸压过程中Avrami指数最大值对应的压力区间,如图9和表1所示,其中:nmax、nmed、nmin分别为Avrami指数的最大值、中值、最小值。可以看出:在升压过程中,新相集中在11~12 GPa成核;在卸压过程中,新相集中在8~9 GPa成核。这是因为在卸压过程中腔体压力由高到低,可能出现腔体实际压力相对于系统加载油压滞后的现象,导致升卸压过程中集中成核的压力区间不同。另外,随着往复压致相变次数的增加,样品的Avrami指数整体呈现增大的趋势,说明随着往复压致相变次数的增加,形核位点不断增加,从而从侧面反映了样品晶粒得到细化,数量更多、粒径更小的晶粒为新相的形成提供更多的成核位点。
Process | n | ln t | p/GPa | Process | n | ln t | p/GPa | |
3CD-D | 13.92a | 8.06–8.20 | 9.07–8.43 | 5CD-D | 18.55a | 8.46–8.58 | 9.22–8.32 | |
4.50b | 7.69–8.06 | 10.52–9.07 | 7.13b | 8.14–8.46 | 11.23–9.22 | |||
2.14c | 7.08–7.69 | 12.02–10.52 | 4.90c | 7.70–8.14 | 12.73–11.23 | |||
4CD-C | 27.30a | 7.75–7.81 | 11.81–12.06 | 6CD-C | 22.09a | 7.46–7.60 | 11.08–11.31 | |
8.22b | 7.81–8.00 | 12.06–12.62 | 5.43b | 7.60–7.94 | 11.31–12.58 | |||
3.86c | 8.00–8.48 | 12.62–14.82 | 3.16c | 7.94–8.52 | 12.58–14.97 | |||
4CD-D | 21.90a | 8.45–8.57 | 8.99–8.25 | 6CD-D | 45.00a | 8.48–8.52 | 8.79–8.40 | |
6.87b | 8.16–8.45 | 11.10–8.99 | 21.15b | 8.03–8.48 | 9.81–8.79 | |||
3.12c | 7.48–8.16 | 13.37–11.10 | 5.40c | 7.71–8.33 | 12.60–9.81 | |||
5CD-C | 17.73a | 31.87–33.14 | 11.31–11.81 | |||||
5.26b | 33.14–37.00 | 11.81–13.17 | ||||||
3.39c | 37.00–44.87 | 13.17–15.13 | ||||||
Note: Superscript lowercase letters a, b and c represent the maximum, the median and the minimum values of the Avrami index during the compression and decompression process, respectively. |
图10给出了DC Ge 、β-Sn Ge、ST12 Ge晶格的(001)面示意图。在升压过程中,DC Ge到β-Sn Ge的相变可以看作DC Ge中的晶格原子沿 (100)面和(010)面的拉伸以及沿(001)面的压缩,虽然体积压缩率达到18.4%,但是在相变过程中只涉及键长的变化,未涉及键角的扭曲,是典型的位移型相变[26]。而在卸压过程中,β-Sn Ge到ST12 Ge的相变不仅涉及键长变化和较高的体积变化率,同时还涉及大键角扭曲,相变后原子与原子之间的相对位置发生了明显的改变,属于扩散型相变[27-29]。在高压的作用下,Ge原有相的晶体结构遭到破坏,原子位置发生变化,形成新的晶体结构。在新相生长阶段,高压作用会抑制原子的长程扩散,从而抑制新相晶粒的长大,达到细化晶粒的效果。特别是扩散型相变,高压对其晶粒生长的抑制作用更明显。此外,β-Sn Ge与ST12 Ge之间能够相互转化,属于可逆相变。因此,通过对样品进行往复升卸压,使其经历多次相变,高压对晶粒的细化效果得以累积,最终制备出具有超细纳米结构的块体材料。
当高压对样品的细化效果叠加到一定程度时,最细晶粒达到纳米级别,而纳米级β-Sn Ge晶粒在卸压过程中不一定会再相变为ST12 Ge纳米晶,而更倾向于转化为非晶,这是因为当晶粒细化到纳米尺寸后,随着样品的比表(界)面积和表(界)面能的急剧增大,无法提供足够高的使ST12 Ge新相形核的驱动力,此时 β-Sn Ge跨越更低的势垒形成非晶状态[22, 30]。此外,也可以把非晶结构的形成看作高压对抑制原子长程扩散的极致情形,此时原子只能进行短程扩散移动,达到相变压力点时,母相晶格失稳坍塌,驱动力又不足以使原子通过长程扩散形成规则排列的新相晶体结构。
TEM、SEM以及XRD谱均显示了高压往复相变对Ge的晶粒细化效果,但是在XRD谱中并没有观测到纳米材料应有的峰的宽化现象和非晶峰。为了进一步验证实验结果,在北京同步辐射光源进行了高压往复相变的原位XRD测试,结果如图11所示。其中:图11(a)为第5次升卸压过程的原位XRD谱,在0~15 GPa压力范围内经历了ST12 Ge—β-Sn Ge—ST12 Ge两次相变。对2~5次往复压致相变后卸到常压的样品的XRD谱(见图11(b))和特征峰的峰宽进行了分析(见图11(c)),并未观测到明显的非晶峰和峰的宽化现象。
在往复5次样品的SEM图像中观测到有些区域的晶粒仍为微米级。如图12所示,这些微米级晶粒与纳米晶区及非晶区共同存在,由于微米晶粒区域的XRD峰强远大于纳米区域和非晶区域的峰强,掩盖了纳米晶和非晶衍射峰的峰宽变化,因此未观测到XRD谱发生明显的宽化和非晶峰。
对样品的晶态区进行SAED,如图13所示,得到了明显的多晶衍射环,证明了其晶体结构特征,但是在HRTEM图像中仍然发现了部分非晶区域。根据文献[31-32]报道,ST12 Ge会在加热后转变为DC Ge,对ST12 Ge纯相样品进行差热分析(differential scanning calorimetry,DSC)测试,得到其相变温度为529.56 K。在此温度区间未观测到其他峰,样品未熔化。这意味着ST12 Ge在熔化前会先转变为DC Ge,因而无法测得常压下ST12 Ge的熔点,也就无法推断ST12 Ge的再结晶温度。根据往复5次实验样品中出现的大晶粒区域,推断加压过程中ST12 Ge发生了再结晶现象,导致部分区域的晶粒长大。样品最终呈现的纳米晶、非晶区域和微米晶区域交错产生的现象是高压抑制晶粒生长和再结晶导致晶粒长大两种驱动力相互博弈的结果。
基于6×8 MN六面顶压机的二级增压装置和DAC装置,结合高压原位XRD技术,对Ge在高压往复压致相变过程中的相变行为和晶粒尺寸变化规律进行了研究。结果表明:在经历5次往复相变后,晶粒细化到纳米级,且有部分区域转化为非晶,证实了高压往复相变对晶粒细化的效果,从而提供了一种制备纳米晶块体和非晶材料的新思路。同时,在部分区域仍然存在微米大小的晶粒,推测在加压过程中ST12 Ge发生再结晶进而导致晶粒长大。样品最终呈现出纳米晶、非晶区域和微米晶粒区域交错分布的现象,这应该是高压抑制晶粒生长以及再结晶导致晶粒长大两种动力学机制相互博弈的结果。
[1] |
VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829
|
[2] |
BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954
|
[3] |
BAXEVANIS T, PARRINELLO A F, LAGOUDAS D C. On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys [J]. International Journal of Plasticity, 2013, 50: 158–169. doi: 10.1016/J.IJPLAS.2013.04.007
|
[4] |
GUNKELMANN N, BRINGA E M, URBASSEK H M. Influence of phase transition on shock-induced spallation in nanocrystalline iron [J]. Journal of Applied Physics, 2015, 118(18): 185902. doi: 10.1063/1.4935452
|
[5] |
CHERKAOUI M, BERVEILLER M, LEMOINE X. Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels [J]. International Journal of Plasticity, 2000, 16(10/11): 1215–1241. doi: 10.1016/S0749-6419(00)00008-5
|
[6] |
TAKAHASHI T, BASSETT W A. High-pressure polymorph of iron [J]. Science, 1964, 145(3631): 483–486. doi: 10.1126/science.145.3631.483
|
[7] |
BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
|
[8] |
唐志平. 冲击相变[M]. 北京: 科学出版社, 2008.
TANG Z P. Shock-induced phase transition [M]. Beijing: Science Press, 2008.
|
[9] |
唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
|
[10] |
BLANK V D, ESTRIN E I. Phase transitions in solids under high pressure [M]. Boca Raton: CRC Press, 2013.
|
[11] |
MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, 1994.
|
[12] |
ZARKEVICH N A, JOHNSON D D. Coexistence pressure for a martensitic transformation from theory and experiment: revisiting the bcc-hcp transition of iron under pressure [J]. Physical Review B, 2015, 91(17): 174104. doi: 10.1103/PhysRevB.91.174104
|
[13] |
AIRSS. Ab initio random structure searching [EB/OL]. [2021–03–03]. https://www.mtg.msm.cam.ac.uk/Codes/AIRSS.
|
[14] |
CALYPSO. CALYPSO: an efficient structure prediction method and computer software [EB/OL]. [2021−03−03]. http://calypso.cn/cdg/.
|
[15] |
SCHAEFER B, MOHR S, AMSLER M, et al. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways [J]. The Journal of Chemical Physics, 2014, 140(21): 214102. doi: 10.1063/1.4878944
|
[16] |
MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter [J]. Science, 2013, 342(6155): 220–223. doi: 10.1126/science.1239566
|
[17] |
SHEN G Y, MAO H K, HEMLEY R J, et al. Melting and crystal structure of iron at high pressures and temperatures [J]. Geophysical Research Letters, 1998, 25(3): 373–376. doi: 10.1029/97GL03776
|
[18] |
HARRISON R J, VOTER A F, CHEN S P. Embedded atom potential for BCC iron [M]//VITEK V, SROLOVITZ D J. Atomistic Simulation of Materials. Boston: Springer, 1989: 219–222.
|
[19] |
MEYER R, ENTEL P. Martensite-austenite transition and phonon dispersion curves of Fe1- xNix studied by molecular-dynamics simulations [J]. Physical Review B, 1998, 57(9): 5140–5147. doi: 10.1103/PhysRevB.57.5140
|
[20] |
MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philosophical Magazine, 2003, 83(35): 3977–3994. doi: 10.1080/14786430310001613264
|
[21] |
GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
|
[22] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
|
[23] |
WANG F M, INGALLS R. Iron bcc-hcp transition: local structure from x-ray-absorption fine structure [J]. Physical Review B, 1998, 57(10): 5647–5654. doi: 10.1103/PhysRevB.57.5647
|
[24] |
SANO T, MORI H, SAKATA O, et al. Femtosecond laser driven shock synthesis of the high-pressure phase of iron [J]. Applied Surface Science, 2005, 247(1/2/3/4): 571–576. doi: 10.1016/j.apsusc.2005.01.050
|
[25] |
HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the x-ray diffraction signal for the α−ɛ transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
|
[26] |
LU Z P, ZHU W J, LU T C, et al. Does the fcc phase exist in the Fe bcc–hcp transition? A conclusion from first-principles studies [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025007. doi: 10.1088/0965-0393/22/2/025007
|
[27] |
KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the α−ɛ transition in shock-compressed iron via nanosecond x-ray diffraction [J]. Physical Review Letters, 2005, 95(7): 075502. doi: 10.1103/PhysRevLett.95.075502
|
[28] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
|
[29] |
DEWAELE A, DENOUAL C, ANZELLINI S, et al. Mechanism of the α−ɛ phase transformation in iron [J]. Physical Review B, 2015, 91(17): 174105. doi: 10.1103/PhysRevB.91.174105
|
[30] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
|
[31] |
RAVELO R, AN Q, GERMANN T C, et al. Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals [J]. AIP Conference Proceedings, 2012, 1426(1): 1263–1266. doi: 10.1063/1.3686510
|
[32] |
EHEMANN R C, NICKLAS J W, PARK H, et al. Ab initio based empirical potential applied to tungsten at high pressure [J]. Physical Review B, 2017, 95(18): 184101. doi: 10.1103/PhysRevB.95.184101
|
[33] |
WANG K, ZHU W J, XIANG M Z, et al. Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions [J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(1): 015001. doi: 10.1088/1361-651X/aaea55
|
[34] |
WANG K, XIAO S F, DENG H Q, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
|
[35] |
ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198
|
[36] |
GUNKELMANN N, BRINGA E M, TRAMONTINA D R, et al. Shock waves in polycrystalline iron: plasticity and phase transitions [J]. Physical Review B, 2014, 89(14): 140102. doi: 10.1103/PhysRevB.89.140102
|
[37] |
张邦维, 胡望宇, 舒小林. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论[M]. 长沙: 湖南大学出版社, 2003.
ZHANG B W, HU W Y, SHU X L. Theory of embedded atom method and its application to materials science [M]. Changsha: Hunan University Press, 2003.
|
[38] |
WANG K, XIAO S F, LIU M, et al. Shock waves propagation and phase transition in single crystal iron under ramp compression: large scale parallel NEMD simulations [J]. Procedia Engineering, 2013, 61: 122–129. doi: 10.1016/j.proeng.2013.07.104
|
[39] |
WANG K, ZHU W J, XIAO S F, et al. A new embedded-atom method approach based on the p-th moment approximation [J]. Journal of Physics: Condensed Matter, 2016, 28(50): 505201. doi: 10.1088/0953-8984/28/50/505201
|
[40] |
王昆. 铁冲击塑性与相变的原子模拟[D]. 长沙: 湖南大学, 2015: 46−48.
WANG K. An atomistic study on shock induced plasiticity and phase transition of iron [D]. Changsha: Hunan University, 2015: 46−48.
|
[41] |
LUO W H, HU W Y, XIAO S F, et al. Phase transition in nanocrystalline iron: atomistic-level simulations [J]. International Journal of Materials Research, 2010, 101(11): 1361–1368. doi: 10.3139/146.110418
|
[42] |
FU C C, WILLAIME F, ORDEJÓN P. Stability and mobility of mono- and di-interstitials in α-Fe [J]. Physical Review Letters, 2004, 92(17): 175503. doi: 10.1103/PhysRevLett.92.175503
|
[43] |
DOMAIN C, BECQUART C S. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys [J]. Physical Review B, 2001, 65(2): 024103. doi: 10.1103/PhysRevB.65.024103
|
[44] |
DE BOER F R, BOOM R, MATTENS W C M, et al. Cohesion in metals: transition metal alloys [M]. New York: North-Holland, 1988.
|
[45] |
YAN J A, WANG C Y, WANG S Y. Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principles study [J]. Physical Review B, 2004, 70(17): 174105. doi: 10.1103/PhysRevB.70.174105
|
[46] |
RAYNE J A, CHANDRASEKHAR B S. Elastic constants of iron from 4.2 to 300 K [J]. Physical Review, 1961, 122(6): 1714–1716. doi: 10.1103/PHYSREV.122.1714
|
[47] |
SIMMONS G, WANG H. Single crystal elastic constants and calculated aggregate properties [M]. Cambridge: MIT Press, 1971.
|
[48] |
KLOTZ S, BRADEN M. Phonon dispersion of bcc iron to 10 GPa [J]. Physical Review Letters, 2000, 85(15): 3209–3212. doi: 10.1103/PhysRevLett.85.3209
|
[49] |
SÖDERLIND P, MORIARTY J A, WILLS J M. First-principles theory of iron up to earth-core pressures: structural, vibrational, and elastic properties [J]. Physical Review B, 1996, 53(21): 14063–14072. doi: 10.1103/physrevb.53.14063
|
[50] |
CASPERSEN K J, LEW A, ORTIZ M, et al. Importance of shear in the bcc-to-hcp transformation in iron [J]. Physical Review Letters, 2004, 93(11): 115501. doi: 10.1103/PhysRevLett.93.115501
|
[51] |
WOAN G. The Cambridge handbook of physics formulas [M]. Cambridge: Cambridge University Press, 2003: 124−125.
|
[52] |
DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Quasihydrostatic equation of state of iron above 2 mbar [J]. Physical Review Letters, 2006, 97(21): 215504. doi: 10.1103/PhysRevLett.97.215504
|
[53] |
SHA X W, COHEN R E. Lattice dynamics and thermodynamics of bcc iron under pressure: first-principles linear response study [J]. Physical Review B, 2006, 73(10): 104303. doi: 10.1103/PhysRevB.73.104303
|
[54] |
SHA X W, COHEN R E. First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures [J]. Physical Review B, 2010, 81(9): 094105. doi: 10.1103/PhysRevB.81.094105
|
[55] |
HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
|
[56] |
DENOEUD A, OZAKI N, BENUZZI-MOUNAIX A, et al. Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7745–7749. doi: 10.1073/PNAS.1512127113
|
[57] |
AMADOU N, DE RESSEGUIER T, DRAGON A, et al. Coupling between plasticity and phase transition in shock- and ramp-compressed single-crystal iron [J]. Physical Review B, 2018, 98(2): 024104. doi: 10.1103/PhysRevB.98.024104
|
[58] |
SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
|
[59] |
SMITH R F, EGGERT J H, RUDD R E, et al. High strain-rate plastic flow in Al and Fe [J]. Journal of Applied Physics, 2011, 110(12): 123515. doi: 10.1063/1.3670001
|
[60] |
LUO B Q, LI M, WANG G J, et al. Strain rate and hydrostatic pressure effects on strength of iron [J]. Mechanics of Materials, 2017, 114: 142–146. doi: 10.1016/j.mechmat.2017.08.001
|
[61] |
AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α−ɛ phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108
|
[62] |
WANG K, CHEN J, ZHU W J, et al. Phase transition of iron-based single crystals under ramp compressions with extreme strain rates [J]. International Journal of Plasticity, 2017, 96: 56–80. doi: 10.1016/j.ijplas.2017.04.016
|
[63] |
PANG W W, ZHANG P, ZHANG G C, et al. Nucleation and growth mechanisms of hcp domains in compressed iron [J]. Scientific Reports, 2014, 4: 5273. doi: 10.1038/SREP05273
|
[64] |
PANG W W, ZHANG P, ZHANG G C, et al. Morphology and growth speed of hcp domains during shock-induced phase transition in iron [J]. Scientific Reports, 2014, 4: 3628. doi: 10.1038/srep03628.
|
[65] |
SHAO J L, DUAN S Q, HE A M, et al. Dynamic properties of structural transition in iron under uniaxial compression [J]. Journal of Physics: Condensed Matter, 2009, 21(24): 245703. doi: 10.1088/0953-8984/21/24/245703
|
[66] |
王昆. 极端应变率下金属的塑性与相变[R]. 北京: 北京应用物理与计算数学研究所, 2018.
WANG K. Plasticity and phase transition of metals at extreme strain rates [R]. Beijing: Institute of Applied Physics and Computational Mathematics, 2018.
|
[67] |
WANG K, ZHU W J, XIAO S F, et al. Coupling between plasticity and phase transition of polycrystalline iron under shock compressions [J]. International Journal of Plasticity, 2015, 71: 218–236. doi: 10.1016/J.IJPLAS.2015.01.002
|
[68] |
SHAO J L, DUAN S Q, HE A M, et al. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading [J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355403. doi: 10.1088/0953-8984/22/35/355403
|
[69] |
JENSEN B J, GRAY III G T, HIXSON R S. Direct measurements of the α−ɛ transition stress and kinetics for shocked iron [J]. Journal of Applied Physics, 2009, 105(10): 103502. doi: 10.1063/1.3110188
|
[70] |
SHAO J L, WANG P, ZHANG F G, et al. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron [J]. Journal of Physics: Condensed Matter, 2018, 30(25): 255401. doi: 10.1088/1361-648X/aac40c
|
[71] |
CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
|
[72] |
WU L, WANG K, XIAO S F, et al. Atomistic studies of shock-induced phase transformations in single crystal iron with cylindrical nanopores [J]. Computational Materials Science, 2016, 122: 1–10. doi: 10.1016/j.commatsci.2016.05.010
|
[73] |
GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J]. New Journal of Physics, 2014, 16(9): 093032. doi: 10.1088/1367-2630/16/9/093032
|
[74] |
WANG K, CHEN J, ZHANG X Y, et al. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading [J]. Journal of Applied Physics, 2017, 122(10): 105107. doi: 10.1063/1.4997320
|
[75] |
ZHANG X Y, WANG K, ZHU W J, et al. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals [J]. Journal of Applied Physics, 2018, 123(4): 045105. doi: 10.1063/1.5003891
|
[76] |
HUANG Y F, XIONG Y N, LI P, et al. Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation [J]. International Journal of Plasticity, 2019, 114: 215–226. doi: 10.3390/POLYM6092404
|
[77] |
LEVITAS V I, JAVANBAKHT M. Interaction between phase transformations and dislocations at the nanoscale. Part 1: general phase field approach [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 287–319. doi: 10.1016/j.jmps.2015.05.005
|
[78] |
JAVANBAKHT M, LEVITAS V I. Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 164–185. doi: 10.1016/J.JMPS.2015.05.006
|
[79] |
WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. doi: 10.1038/srep01086
|
[80] |
GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Morphological changes in polycrystalline Fe after compression and release [J]. Journal of Applied Physics, 2015, 117(8): 085901. doi: 10.1063/1.4913622
|
[81] |
DE RESSÉGUIER T, LESCOUTE E, LOISON D. Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron [J]. Physical Review B, 2012, 86(21): 214102. doi: 10.1103/PhysRevB.86.214102
|
[82] |
陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与"反常"层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05
CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05
|
[83] |
杨世源, 金孝刚, 王军霞, 等. 冲击波加载技术及其在材料研究中的应用 [J]. 材料研究学报, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002
YANG S Y, JIN X G, WANG J X, et al. Shock loading technique and the application in materials research [J]. Chinese Journal of Materials Research, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002
|
[84] |
谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
|
[85] |
江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展 [J]. 中国科学 G辑: 物理学 力学 天文学, 2009, 39(11): 1571–1583.
JIANG S E, DING Y K, MIAO W Y, et al. Recent progress of inertial confinement fusion experiments in China [J]. Science in China (Series G), 2009, 39(11): 1571–1583.
|
[86] |
MEYERS M A, REMINGTON B A, MADDOX B, et al. Laser shocking of materials: toward the national ignition facility [J]. JOM, 2010, 62(1): 24–30. doi: 10.1007/S11837-010-0006-X
|
[87] |
DOBROMYSLOV A V, KOZLOV E A, TALUTS N I. High-strain-rate deformation of armco iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α−ɛ transformation [J]. The Physics of Metals and Metallography, 2008, 106(5): 531–541. doi: 10.1134/S0031918X08110136
|
[88] |
DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper upon loading by spherically converging shock waves: low-intensity loading conditions [J]. The Physics of Metals and Metallography, 2013, 114(4): 358–366. doi: 10.1134/S0031918X13040029
|
[89] |
DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper under conditions of loading by spherically converging shock waves: high-intensity regime of loading [J]. The Physics of Metals and Metallography, 2015, 116(1): 97–108. doi: 10.1134/S0031918X15010044
|
[90] |
TANG F, JIAN Z Y, XIAO S F, et al. Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu [J]. Computational Materials Science, 2020, 183: 109845. doi: 10.1016/j.commatsci.2020.109845
|
[91] |
MURR L E. Metallurgical effects of shock and high-strain-rate loading [M]//BLAZYNSKI T Z. Materials as High Strain Rates. Amsterdam: Elsevier, 1987: 1–46.
|
[92] |
ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful times: memories of 60 years of shock wave research at Sandia National Laboratories [M]. Cham: Springer International Publishing, 2017.
|
[93] |
VATTRÉ A, DENOUAL C. Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 387–403. doi: 10.1016/j.jmps.2019.07.012
|
[94] |
VATTRÉ A, DENOUAL C. Polymorphism of iron at high pressure: a 3D phase-field model for displacive transitions with finite elastoplastic deformations [J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 1–27. doi: 10.1016/j.jmps.2016.01.016
|
[95] |
DENOUAL C, VATTRÉ A. A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants [J]. Journal of the Mechanics and Physics of Solids, 2016, 90: 91–107. doi: 10.1016/j.jmps.2016.02.022
|
[96] |
GREENWOOD M, OFORI-OPOKU N, ROTTLER J, et al. Modeling structural transformations in binary alloys with phase field crystals [J]. Physical Review B, 2011, 84(6): 064104. doi: 10.1103/PhysRevB.84.064104
|
[97] |
GREENWOOD M, PROVATAS N, ROTTLER J. Free energy functionals for efficient phase field crystal modeling of structural phase transformations [J]. Physical Review Letters, 2010, 105(4): 045702. doi: 10.1103/PhysRevLett.105.045702
|
[1] | WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251037 |
[2] | YANG Xiangyang, WU Dun, ZHU Youlin, LI Junguo, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang. Molecular Dynamics Simulation Study on Spallation Failure of [100] Single Crystal Aluminum under Different Waveform Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030106. doi: 10.11858/gywlxb.20240786 |
[3] | CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663 |
[4] | WANG Jianan, WU Bao, HE Anmin, WU Fengchao, WANG Pei, WU Heng’an. Research Progress on Dynamic Damage and Failure of Metal Materials under Shock Loading with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747 |
[5] | CHONG Tao, TANG Zhiping, TAN Fuli, WANG Guiji, ZHAO Jianheng. Numerical Simulation of Phase Transition and Spall of Iron[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102. doi: 10.11858/gywlxb.20170528 |
[6] | YU Chao, REN Hui-Lan, NING Jian-Guo. Molecular Dynamic Simulation on Shock Plasticity Behaviour of Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 211-215. doi: 10.11858/gywlxb.2013.02.007 |
[7] | LI Qing-Zhong, CHEN Yong-Tao, HU Hai-Bo, XU Yong-Bo. Experimental Study on Phase Transition and Spall Fracture in FeMnNi Alloy under Shock Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 107-112 . doi: 10.11858/gywlxb.2010.02.005 |
[8] | CHEN Yong-Tao, LI Qing-Zhong, TANG Xiao-Jun, LU Qiu-Hong. Study on Phase Transition and Spallation of Pure Iron under Given Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 213-218 . doi: 10.11858/gywlxb.2010.03.009 |
[9] | LI Qing-Zhong, CHEN Yong-Tao, TANG Tie-Gang. Loading and Unloading Process, Phase Transition, and Spallation in FeMnNi Alloy under High Shock-Compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 117-122 . doi: 10.11858/gywlxb.2009.02.007 |
[10] | ZHOU Xiao-Ping, YANG Xiang-Dong, LIU Jin-Chao. Molecular Dynamics Simulation of Water under Superhigh Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 310-314 . doi: 10.11858/gywlxb.2009.04.012 |
[11] | ZHANG Gong-Mu, LIU Hai-Feng, DUAN Su-Qing. Melting Property of Mo at High Pressure from Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012 |
[12] | HUANG Wei-Jun, CUI Qi-Liang, BI Yan, ZHOU Qiang, ZOU Guang-Tian. Electrical Conductivity and X-Ray Diffraction Study of Iron under High Pressures[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 40-44 . doi: 10.11858/gywlxb.2007.01.007 |
[13] | HUANG Hai-Jun, CAI Ling-Cang, TIAN Xu. Does There Exist a Solid-Solid Transformation in Shocked Iron at around 200 GPa?[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 205-209 . doi: 10.11858/gywlxb.2007.02.015 |
[14] | CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017 |
[15] | SUN Yu-Xin, ZHANG Jin, LI Yong-Chi, HU Shi-Sheng, DONG Jie. Propagation of Stress wave and Spallation of Cylindrical Tube under External Explosive Loading[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 319-324 . doi: 10.11858/gywlxb.2005.04.006 |
[16] | LI Xi-Jun, GONG Zi-Zheng, LIU Fu-Sheng, CAI Ling-Cang, JING Fu-Qian. A Problem in Measurements of High Pressure Melting Curve of Iron: Influence of Melting Mechanism on the Melting Temperature[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 221-225 . doi: 10.11858/gywlxb.2001.03.009 |
[17] | DONG Yu-Bin, SU Lin-Xiang, CHEN Da-Nian, JING Fu-Qian, HAN Jun-Wan, FENG Jia-Bo. Numerical Simulation on the Spallation of a Steel Cylindrical Shell Imploded under Slipping Detonation[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 1-10 . doi: 10.11858/gywlxb.1989.01.001 |
[18] | HU Xiao-Mian. Crystal structure Stability Study by Molecular Dynamics Method with Variable Cell[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 132-142 . doi: 10.11858/gywlxb.1989.02.005 |
[19] | YU Wan-Rui, LIU Ge-San. Molecular Dynamic Investigation of Shock Waves in the Solid[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 73-78 . doi: 10.11858/gywlxb.1988.01.010 |
[20] | CHEN Dong-Quan, XIE Guo-Qiang. Molecular Dynamics Simulation of Polymorphous Transitions[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 50-57 . doi: 10.11858/gywlxb.1987.01.007 |
Process | n | ln t | p/GPa | Process | n | ln t | p/GPa | |
3CD-D | 13.92a | 8.06–8.20 | 9.07–8.43 | 5CD-D | 18.55a | 8.46–8.58 | 9.22–8.32 | |
4.50b | 7.69–8.06 | 10.52–9.07 | 7.13b | 8.14–8.46 | 11.23–9.22 | |||
2.14c | 7.08–7.69 | 12.02–10.52 | 4.90c | 7.70–8.14 | 12.73–11.23 | |||
4CD-C | 27.30a | 7.75–7.81 | 11.81–12.06 | 6CD-C | 22.09a | 7.46–7.60 | 11.08–11.31 | |
8.22b | 7.81–8.00 | 12.06–12.62 | 5.43b | 7.60–7.94 | 11.31–12.58 | |||
3.86c | 8.00–8.48 | 12.62–14.82 | 3.16c | 7.94–8.52 | 12.58–14.97 | |||
4CD-D | 21.90a | 8.45–8.57 | 8.99–8.25 | 6CD-D | 45.00a | 8.48–8.52 | 8.79–8.40 | |
6.87b | 8.16–8.45 | 11.10–8.99 | 21.15b | 8.03–8.48 | 9.81–8.79 | |||
3.12c | 7.48–8.16 | 13.37–11.10 | 5.40c | 7.71–8.33 | 12.60–9.81 | |||
5CD-C | 17.73a | 31.87–33.14 | 11.31–11.81 | |||||
5.26b | 33.14–37.00 | 11.81–13.17 | ||||||
3.39c | 37.00–44.87 | 13.17–15.13 | ||||||
Note: Superscript lowercase letters a, b and c represent the maximum, the median and the minimum values of the Avrami index during the compression and decompression process, respectively. |