Volume 35 Issue 4
Aug 2021
Turn off MathJax
Article Contents
WANG Kun, XIAO Shifang, ZHU Wenjun, CHEN Jun, HU Wangyu. Progress on Atomic Simulations of Phase Transition of Iron under Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729
Citation: WANG Kun, XIAO Shifang, ZHU Wenjun, CHEN Jun, HU Wangyu. Progress on Atomic Simulations of Phase Transition of Iron under Dynamic Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729

Progress on Atomic Simulations of Phase Transition of Iron under Dynamic Loading

doi: 10.11858/gywlxb.20210729
  • Received Date: 03 Mar 2021
  • Rev Recd Date: 16 Apr 2021
  • $\alpha $$\varepsilon $ transformation of iron is a prototype of high-pressure phase transition in metals. With the progress of detecting technology, mechanism and dynamics of the phase transition have being investigated in depth. Laser-driven in situ X-ray observation combined with non-equilibrium molecular dynamics simulation is one of the most effective approach to the issue. In present paper, the progress of atomic investigations on plasticity and phase transformation of iron under dynamic loading is reviewed. The effects of high-pressure interatomic potential of iron, crystal anisotropy, impact strength, strain rate, strain gradient and various initial crystal defects on phase transformation mechanism, phase transformation and spalling of iron are analyzed. Meanwhile, the latest progress of our researches on nonplanar-loading responses of iron is reported. Finally, the conclusion and prospect are given.

     

  • loading
  • [1]
    VOČADLO L, ALFÈ D, GILLAN M J, et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core [J]. Nature, 2003, 424(6948): 536–539. doi: 10.1038/nature01829
    [2]
    BELONOSHKO A B, AHUJA R, JOHANSSON B. Stability of the body-centred-cubic phase of iron in the Earth’s inner core [J]. Nature, 2003, 424(6952): 1032–1034. doi: 10.1038/nature01954
    [3]
    BAXEVANIS T, PARRINELLO A F, LAGOUDAS D C. On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys [J]. International Journal of Plasticity, 2013, 50: 158–169. doi: 10.1016/J.IJPLAS.2013.04.007
    [4]
    GUNKELMANN N, BRINGA E M, URBASSEK H M. Influence of phase transition on shock-induced spallation in nanocrystalline iron [J]. Journal of Applied Physics, 2015, 118(18): 185902. doi: 10.1063/1.4935452
    [5]
    CHERKAOUI M, BERVEILLER M, LEMOINE X. Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels [J]. International Journal of Plasticity, 2000, 16(10/11): 1215–1241. doi: 10.1016/S0749-6419(00)00008-5
    [6]
    TAKAHASHI T, BASSETT W A. High-pressure polymorph of iron [J]. Science, 1964, 145(3631): 483–486. doi: 10.1126/science.145.3631.483
    [7]
    BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
    [8]
    唐志平. 冲击相变[M]. 北京: 科学出版社, 2008.

    TANG Z P. Shock-induced phase transition [M]. Beijing: Science Press, 2008.
    [9]
    唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003

    TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
    [10]
    BLANK V D, ESTRIN E I. Phase transitions in solids under high pressure [M]. Boca Raton: CRC Press, 2013.
    [11]
    MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, 1994.
    [12]
    ZARKEVICH N A, JOHNSON D D. Coexistence pressure for a martensitic transformation from theory and experiment: revisiting the bcc-hcp transition of iron under pressure [J]. Physical Review B, 2015, 91(17): 174104. doi: 10.1103/PhysRevB.91.174104
    [13]
    AIRSS. Ab initio random structure searching [EB/OL]. [2021–03–03]. https://www.mtg.msm.cam.ac.uk/Codes/AIRSS.
    [14]
    CALYPSO. CALYPSO: an efficient structure prediction method and computer software [EB/OL]. [2021−03−03]. http://calypso.cn/cdg/.
    [15]
    SCHAEFER B, MOHR S, AMSLER M, et al. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways [J]. The Journal of Chemical Physics, 2014, 140(21): 214102. doi: 10.1063/1.4878944
    [16]
    MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter [J]. Science, 2013, 342(6155): 220–223. doi: 10.1126/science.1239566
    [17]
    SHEN G Y, MAO H K, HEMLEY R J, et al. Melting and crystal structure of iron at high pressures and temperatures [J]. Geophysical Research Letters, 1998, 25(3): 373–376. doi: 10.1029/97GL03776
    [18]
    HARRISON R J, VOTER A F, CHEN S P. Embedded atom potential for BCC iron [M]//VITEK V, SROLOVITZ D J. Atomistic Simulation of Materials. Boston: Springer, 1989: 219–222.
    [19]
    MEYER R, ENTEL P. Martensite-austenite transition and phonon dispersion curves of Fe1- xNix studied by molecular-dynamics simulations [J]. Physical Review B, 1998, 57(9): 5140–5147. doi: 10.1103/PhysRevB.57.5140
    [20]
    MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philosophical Magazine, 2003, 83(35): 3977–3994. doi: 10.1080/14786430310001613264
    [21]
    GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
    [22]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
    [23]
    WANG F M, INGALLS R. Iron bcc-hcp transition: local structure from x-ray-absorption fine structure [J]. Physical Review B, 1998, 57(10): 5647–5654. doi: 10.1103/PhysRevB.57.5647
    [24]
    SANO T, MORI H, SAKATA O, et al. Femtosecond laser driven shock synthesis of the high-pressure phase of iron [J]. Applied Surface Science, 2005, 247(1/2/3/4): 571–576. doi: 10.1016/j.apsusc.2005.01.050
    [25]
    HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the x-ray diffraction signal for the α−ɛ transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
    [26]
    LU Z P, ZHU W J, LU T C, et al. Does the fcc phase exist in the Fe bcc–hcp transition? A conclusion from first-principles studies [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025007. doi: 10.1088/0965-0393/22/2/025007
    [27]
    KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the α−ɛ transition in shock-compressed iron via nanosecond x-ray diffraction [J]. Physical Review Letters, 2005, 95(7): 075502. doi: 10.1103/PhysRevLett.95.075502
    [28]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
    [29]
    DEWAELE A, DENOUAL C, ANZELLINI S, et al. Mechanism of the α−ɛ phase transformation in iron [J]. Physical Review B, 2015, 91(17): 174105. doi: 10.1103/PhysRevB.91.174105
    [30]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [31]
    RAVELO R, AN Q, GERMANN T C, et al. Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals [J]. AIP Conference Proceedings, 2012, 1426(1): 1263–1266. doi: 10.1063/1.3686510
    [32]
    EHEMANN R C, NICKLAS J W, PARK H, et al. Ab initio based empirical potential applied to tungsten at high pressure [J]. Physical Review B, 2017, 95(18): 184101. doi: 10.1103/PhysRevB.95.184101
    [33]
    WANG K, ZHU W J, XIANG M Z, et al. Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions [J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(1): 015001. doi: 10.1088/1361-651X/aaea55
    [34]
    WANG K, XIAO S F, DENG H Q, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
    [35]
    ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198
    [36]
    GUNKELMANN N, BRINGA E M, TRAMONTINA D R, et al. Shock waves in polycrystalline iron: plasticity and phase transitions [J]. Physical Review B, 2014, 89(14): 140102. doi: 10.1103/PhysRevB.89.140102
    [37]
    张邦维, 胡望宇, 舒小林. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论[M]. 长沙: 湖南大学出版社, 2003.

    ZHANG B W, HU W Y, SHU X L. Theory of embedded atom method and its application to materials science [M]. Changsha: Hunan University Press, 2003.
    [38]
    WANG K, XIAO S F, LIU M, et al. Shock waves propagation and phase transition in single crystal iron under ramp compression: large scale parallel NEMD simulations [J]. Procedia Engineering, 2013, 61: 122–129. doi: 10.1016/j.proeng.2013.07.104
    [39]
    WANG K, ZHU W J, XIAO S F, et al. A new embedded-atom method approach based on the p-th moment approximation [J]. Journal of Physics: Condensed Matter, 2016, 28(50): 505201. doi: 10.1088/0953-8984/28/50/505201
    [40]
    王昆. 铁冲击塑性与相变的原子模拟[D]. 长沙: 湖南大学, 2015: 46−48.

    WANG K. An atomistic study on shock induced plasiticity and phase transition of iron [D]. Changsha: Hunan University, 2015: 46−48.
    [41]
    LUO W H, HU W Y, XIAO S F, et al. Phase transition in nanocrystalline iron: atomistic-level simulations [J]. International Journal of Materials Research, 2010, 101(11): 1361–1368. doi: 10.3139/146.110418
    [42]
    FU C C, WILLAIME F, ORDEJÓN P. Stability and mobility of mono- and di-interstitials in α-Fe [J]. Physical Review Letters, 2004, 92(17): 175503. doi: 10.1103/PhysRevLett.92.175503
    [43]
    DOMAIN C, BECQUART C S. Ab initio calculations of defects in Fe and dilute Fe-Cu alloys [J]. Physical Review B, 2001, 65(2): 024103. doi: 10.1103/PhysRevB.65.024103
    [44]
    DE BOER F R, BOOM R, MATTENS W C M, et al. Cohesion in metals: transition metal alloys [M]. New York: North-Holland, 1988.
    [45]
    YAN J A, WANG C Y, WANG S Y. Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principles study [J]. Physical Review B, 2004, 70(17): 174105. doi: 10.1103/PhysRevB.70.174105
    [46]
    RAYNE J A, CHANDRASEKHAR B S. Elastic constants of iron from 4.2 to 300 K [J]. Physical Review, 1961, 122(6): 1714–1716. doi: 10.1103/PHYSREV.122.1714
    [47]
    SIMMONS G, WANG H. Single crystal elastic constants and calculated aggregate properties [M]. Cambridge: MIT Press, 1971.
    [48]
    KLOTZ S, BRADEN M. Phonon dispersion of bcc iron to 10 GPa [J]. Physical Review Letters, 2000, 85(15): 3209–3212. doi: 10.1103/PhysRevLett.85.3209
    [49]
    SÖDERLIND P, MORIARTY J A, WILLS J M. First-principles theory of iron up to earth-core pressures: structural, vibrational, and elastic properties [J]. Physical Review B, 1996, 53(21): 14063–14072. doi: 10.1103/physrevb.53.14063
    [50]
    CASPERSEN K J, LEW A, ORTIZ M, et al. Importance of shear in the bcc-to-hcp transformation in iron [J]. Physical Review Letters, 2004, 93(11): 115501. doi: 10.1103/PhysRevLett.93.115501
    [51]
    WOAN G. The Cambridge handbook of physics formulas [M]. Cambridge: Cambridge University Press, 2003: 124−125.
    [52]
    DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Quasihydrostatic equation of state of iron above 2 mbar [J]. Physical Review Letters, 2006, 97(21): 215504. doi: 10.1103/PhysRevLett.97.215504
    [53]
    SHA X W, COHEN R E. Lattice dynamics and thermodynamics of bcc iron under pressure: first-principles linear response study [J]. Physical Review B, 2006, 73(10): 104303. doi: 10.1103/PhysRevB.73.104303
    [54]
    SHA X W, COHEN R E. First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures [J]. Physical Review B, 2010, 81(9): 094105. doi: 10.1103/PhysRevB.81.094105
    [55]
    HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
    [56]
    DENOEUD A, OZAKI N, BENUZZI-MOUNAIX A, et al. Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7745–7749. doi: 10.1073/PNAS.1512127113
    [57]
    AMADOU N, DE RESSEGUIER T, DRAGON A, et al. Coupling between plasticity and phase transition in shock- and ramp-compressed single-crystal iron [J]. Physical Review B, 2018, 98(2): 024104. doi: 10.1103/PhysRevB.98.024104
    [58]
    SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [59]
    SMITH R F, EGGERT J H, RUDD R E, et al. High strain-rate plastic flow in Al and Fe [J]. Journal of Applied Physics, 2011, 110(12): 123515. doi: 10.1063/1.3670001
    [60]
    LUO B Q, LI M, WANG G J, et al. Strain rate and hydrostatic pressure effects on strength of iron [J]. Mechanics of Materials, 2017, 114: 142–146. doi: 10.1016/j.mechmat.2017.08.001
    [61]
    AMADOU N, DE RESSEGUIER T, BRAMBRINK E, et al. Kinetics of the iron α−ɛ phase transition at high-strain rates: experiment and model [J]. Physical Review B, 2016, 93(21): 214108. doi: 10.1103/PhysRevB.93.214108
    [62]
    WANG K, CHEN J, ZHU W J, et al. Phase transition of iron-based single crystals under ramp compressions with extreme strain rates [J]. International Journal of Plasticity, 2017, 96: 56–80. doi: 10.1016/j.ijplas.2017.04.016
    [63]
    PANG W W, ZHANG P, ZHANG G C, et al. Nucleation and growth mechanisms of hcp domains in compressed iron [J]. Scientific Reports, 2014, 4: 5273. doi: 10.1038/SREP05273
    [64]
    PANG W W, ZHANG P, ZHANG G C, et al. Morphology and growth speed of hcp domains during shock-induced phase transition in iron [J]. Scientific Reports, 2014, 4: 3628. doi: 10.1038/srep03628.
    [65]
    SHAO J L, DUAN S Q, HE A M, et al. Dynamic properties of structural transition in iron under uniaxial compression [J]. Journal of Physics: Condensed Matter, 2009, 21(24): 245703. doi: 10.1088/0953-8984/21/24/245703
    [66]
    王昆. 极端应变率下金属的塑性与相变[R]. 北京: 北京应用物理与计算数学研究所, 2018.

    WANG K. Plasticity and phase transition of metals at extreme strain rates [R]. Beijing: Institute of Applied Physics and Computational Mathematics, 2018.
    [67]
    WANG K, ZHU W J, XIAO S F, et al. Coupling between plasticity and phase transition of polycrystalline iron under shock compressions [J]. International Journal of Plasticity, 2015, 71: 218–236. doi: 10.1016/J.IJPLAS.2015.01.002
    [68]
    SHAO J L, DUAN S Q, HE A M, et al. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading [J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355403. doi: 10.1088/0953-8984/22/35/355403
    [69]
    JENSEN B J, GRAY III G T, HIXSON R S. Direct measurements of the α−ɛ transition stress and kinetics for shocked iron [J]. Journal of Applied Physics, 2009, 105(10): 103502. doi: 10.1063/1.3110188
    [70]
    SHAO J L, WANG P, ZHANG F G, et al. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron [J]. Journal of Physics: Condensed Matter, 2018, 30(25): 255401. doi: 10.1088/1361-648X/aac40c
    [71]
    CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
    [72]
    WU L, WANG K, XIAO S F, et al. Atomistic studies of shock-induced phase transformations in single crystal iron with cylindrical nanopores [J]. Computational Materials Science, 2016, 122: 1–10. doi: 10.1016/j.commatsci.2016.05.010
    [73]
    GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J]. New Journal of Physics, 2014, 16(9): 093032. doi: 10.1088/1367-2630/16/9/093032
    [74]
    WANG K, CHEN J, ZHANG X Y, et al. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading [J]. Journal of Applied Physics, 2017, 122(10): 105107. doi: 10.1063/1.4997320
    [75]
    ZHANG X Y, WANG K, ZHU W J, et al. Effect of grain boundaries on shock-induced phase transformation in iron bicrystals [J]. Journal of Applied Physics, 2018, 123(4): 045105. doi: 10.1063/1.5003891
    [76]
    HUANG Y F, XIONG Y N, LI P, et al. Atomistic studies of shock-induced plasticity and phase transition in iron-based single crystal with edge dislocation [J]. International Journal of Plasticity, 2019, 114: 215–226. doi: 10.3390/POLYM6092404
    [77]
    LEVITAS V I, JAVANBAKHT M. Interaction between phase transformations and dislocations at the nanoscale. Part 1: general phase field approach [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 287–319. doi: 10.1016/j.jmps.2015.05.005
    [78]
    JAVANBAKHT M, LEVITAS V I. Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples [J]. Journal of the Mechanics and Physics of Solids, 2015, 82: 164–185. doi: 10.1016/J.JMPS.2015.05.006
    [79]
    WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. doi: 10.1038/srep01086
    [80]
    GUNKELMANN N, TRAMONTINA D R, BRINGA E M, et al. Morphological changes in polycrystalline Fe after compression and release [J]. Journal of Applied Physics, 2015, 117(8): 085901. doi: 10.1063/1.4913622
    [81]
    DE RESSÉGUIER T, LESCOUTE E, LOISON D. Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded iron [J]. Physical Review B, 2012, 86(21): 214102. doi: 10.1103/PhysRevB.86.214102
    [82]
    陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与"反常"层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05

    CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. doi: 10.11883/1001-1455(2009)06-0637-05
    [83]
    杨世源, 金孝刚, 王军霞, 等. 冲击波加载技术及其在材料研究中的应用 [J]. 材料研究学报, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002

    YANG S Y, JIN X G, WANG J X, et al. Shock loading technique and the application in materials research [J]. Chinese Journal of Materials Research, 2008, 22(2): 120–124. doi: 10.3321/j.issn:1005-3093.2008.02.002
    [84]
    谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
    [85]
    江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展 [J]. 中国科学 G辑: 物理学 力学 天文学, 2009, 39(11): 1571–1583.

    JIANG S E, DING Y K, MIAO W Y, et al. Recent progress of inertial confinement fusion experiments in China [J]. Science in China (Series G), 2009, 39(11): 1571–1583.
    [86]
    MEYERS M A, REMINGTON B A, MADDOX B, et al. Laser shocking of materials: toward the national ignition facility [J]. JOM, 2010, 62(1): 24–30. doi: 10.1007/S11837-010-0006-X
    [87]
    DOBROMYSLOV A V, KOZLOV E A, TALUTS N I. High-strain-rate deformation of armco iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α−ɛ transformation [J]. The Physics of Metals and Metallography, 2008, 106(5): 531–541. doi: 10.1134/S0031918X08110136
    [88]
    DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper upon loading by spherically converging shock waves: low-intensity loading conditions [J]. The Physics of Metals and Metallography, 2013, 114(4): 358–366. doi: 10.1134/S0031918X13040029
    [89]
    DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Deformation behavior of copper under conditions of loading by spherically converging shock waves: high-intensity regime of loading [J]. The Physics of Metals and Metallography, 2015, 116(1): 97–108. doi: 10.1134/S0031918X15010044
    [90]
    TANG F, JIAN Z Y, XIAO S F, et al. Molecular dynamics simulation of cylindrically converging shock response in single crystal Cu [J]. Computational Materials Science, 2020, 183: 109845. doi: 10.1016/j.commatsci.2020.109845
    [91]
    MURR L E. Metallurgical effects of shock and high-strain-rate loading [M]//BLAZYNSKI T Z. Materials as High Strain Rates. Amsterdam: Elsevier, 1987: 1–46.
    [92]
    ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful times: memories of 60 years of shock wave research at Sandia National Laboratories [M]. Cham: Springer International Publishing, 2017.
    [93]
    VATTRÉ A, DENOUAL C. Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron [J]. Journal of the Mechanics and Physics of Solids, 2019, 131: 387–403. doi: 10.1016/j.jmps.2019.07.012
    [94]
    VATTRÉ A, DENOUAL C. Polymorphism of iron at high pressure: a 3D phase-field model for displacive transitions with finite elastoplastic deformations [J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 1–27. doi: 10.1016/j.jmps.2016.01.016
    [95]
    DENOUAL C, VATTRÉ A. A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants [J]. Journal of the Mechanics and Physics of Solids, 2016, 90: 91–107. doi: 10.1016/j.jmps.2016.02.022
    [96]
    GREENWOOD M, OFORI-OPOKU N, ROTTLER J, et al. Modeling structural transformations in binary alloys with phase field crystals [J]. Physical Review B, 2011, 84(6): 064104. doi: 10.1103/PhysRevB.84.064104
    [97]
    GREENWOOD M, PROVATAS N, ROTTLER J. Free energy functionals for efficient phase field crystal modeling of structural phase transformations [J]. Physical Review Letters, 2010, 105(4): 045702. doi: 10.1103/PhysRevLett.105.045702
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(3)

    Article Metrics

    Article views(3295) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return