CHEN Hu, SHEN Zhengxiang, WANG Du, CHEN Dingyue, YUAN Shuqiang. Dynamical Fragmentation of Steel Cylinders Subjected to Internal Explosive Detonations[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054202. doi: 10.11858/gywlxb.20180527
Citation: HU Bo, GUO Yazhou, WEI Qiuming, SUO Tao, LI Yulong. Temperature Rise during Adiabatic Shear Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728

Temperature Rise during Adiabatic Shear Deformation

doi: 10.11858/gywlxb.20210728
  • Received Date: 28 Feb 2021
  • Rev Recd Date: 02 Apr 2021
  • Temperature rise is an important feature of adiabatic shear phenomenon for many materials. Understanding the role of temperature rise in adiabatic shear is of great significance, because it helps us to get insight into the initiation and evolution mechanism of adiabatic shear band(ASB) and to predict accurately the dynamic failure of materials and structures. Generally speaking, the temperature rise in adiabatic shear deformation can be divided into three stages: uniform deformation stage, shear localization stage, and post-ASB stage. Theoretical calculation, numerical method, experimental measurement and relation with microstructural evolution of temperature rise during adiabatic shear deformation are reviewed. By this review, inspirations and reference are expected for future research work on adiabatic shear failure and related fields.

     

  • 金属柱壳在内部爆炸加载条件下的动态变形、破碎特性有着重要的理论意义和应用价值。在军事领域,由于柱壳结构在战斗部中较为常见,其在爆炸载荷下的力学响应及终点效应一直是关注的热点[1-2];在公共安全领域,为有效限制爆炸冲击波及爆轰产物的作用范围,对人员和设备实现有效保护,抗爆容器可用于紧急处理疑似爆炸物品[3-4];在石油化工领域,压力容器经常在高温和高压下运行,在突发故障下内部易燃易爆介质可能发生爆炸,产生碎片引发多米诺事故也是不可避免的[5-6]

    国内外早期的研究主要集中在柱壳膨胀后期裂纹形成的物理机制、断裂应变分析和破片统计分布规律。Gurnery[7]根据能量平衡模型估算了柱壳外爆膨胀断裂后的破片速度。Taylor[8]基于拉伸断裂假设及弹塑性理论,提出柱壳内部的应力状态与断裂判据。Hoggatt等[9]观察到,随着爆轰压力的增加,柱壳的断裂模式由拉伸型向剪切型转变。Mott[10]和Grady[11]分别从统计学方法和能量守恒观点出发,系统地研究了柱壳破碎后形成大量破片的统计分布规律,并给出相应的破片分布模型。近些年随着计算机技术的进步,数值仿真成为广泛使用的一种研究方法。Hiroe等[12]基于实验与数值模拟结合的方法,研究了不同材料、缺陷结构、爆炸能量及起爆位置对柱壳变形及破碎行为的影响规律。Tanapornraweekit等[13]通过数值仿真研究了柱壳自然破碎后其破片初速度、飞散角和质量分布特征,并分析了不同材料性能对柱壳破碎性能的影响。Kong等[14]利用光滑粒子数值法计算了柱壳在内爆载荷下的动态断裂行为,破片分布及飞散速度与实验结果基本一致。由以上可见,系统研究不同条件下壳体破碎特性的报道并不多见[15]。针对这类强动载柱壳结构,国内外也未形成一种通用的破碎性评估准则。

    本工作以圆柱钢壳为研究对象,分析不同装药条件对壳体膨胀断裂行为的影响,探讨破碎特性和装药与壳体质量比C/M(C为装药质量,M为壳体质量)的内在关系,得出一种新的适用于圆柱壳体的破碎性评估准则。

    试验材料为某典型高强合金钢,其主要化学成分包括0.6%C、1.27%Si、1.15%Mn、0.018%S、0.027%P。装药为B炸药,密度为1.67 g/cm3。所有圆柱钢壳在水井中爆破,且壳体周围预留足够空气区域供其膨胀断裂,按标准方法将破片回收,回收率均在97%以上。按质量分组并记录各组破片的质量和数量,其中质量小于0.04 g的破片只统计总质量。

    一般认为,壳体破片的质量分布符合修正Payman直线方程[16]

    lgP=2C0mM
    (1)

    式中:m为规定的破片分组质量范围的下限; M为回收破片的总质量; P为质量大于m的破片质量百分数(0<P≤100);直线的斜率C0称为修正Payman破碎参数,可用来表征壳体的破碎性能。一般来说,C0值越大,壳体破片的质量分布越合理,破碎性越好。

    研究还发现,修正Payman破碎参数C0与壳体长度L成正比,即

    Cu=C0/L
    (2)

    式中:Cu即为单位长度修正Payman破碎参数,单位cm-1Cu与壳体长度无关,只与壳体材料、装药类型及C/M比值有关。

    为研究壳体的破碎特性与C/M比值的关系,设计了如图 1所示的圆柱壳体,具体尺寸见表 1。为消除端部效应,药柱两端均突出壳体约20 mm。共进行5组试验,每组3发壳体。

    图  1  圆柱钢壳结构示意
    Figure  1.  Schematic of cylindrical steel shell
    表  1  壳体尺寸及装药条件
    Table  1.  Dimensions of shell and charge
    No. D/mm d/mm L/mm C/M
    1 30.64 20.64 70 0.18
    2 41.99 30.13 70 0.23
    3 40.13 30.13 70 0.28
    4 50.87 39.52 70 0.33
    5 49.52 39.52 70 0.38
    下载: 导出CSV 
    | 显示表格

    破片回收后按质量分拣,并根据(1)式分析其质量分布规律,可得出修正Payman破碎参数C0C/M值的关系。如图 2所示,随着C/M比值的增加,C0变大,壳体的破碎性能提高,该现象与壳体断裂及破片形成机制有关,与Reid等[17]的实验结果相符。

    图  2  破碎参数C0C/M值的关系
    Figure  2.  Variation of Payman fragmentation parameter C0 with C/M ratio

    对每组C0取平均值并除以壳体长度,可得到单位长度修正Payman破碎参数Cu。如图 3所示,对CuC/M比值进行线性拟合,拟合直线方程可表示为

    Cu=19.1+92.8C/M
    (3)
    图  3  破碎参数CuC/M比值的关系
    Figure  3.  Variation of normalized Payman fragmentation parameter Cu with C/M ratio

    因此可认为,内爆炸加载条件下,任何圆柱钢壳与炸药组合一般都存在这类线性关系,即

    Cu=a+bC/M
    (4)

    式中:ab被称为壳体材料与炸药组合的特征常数。对于给定的材料与炸药组合,ab为定值。根据壳体破碎的相似性原则,利用(4)式可以评估在相同壳体材料及炸药条件下任何尺寸圆柱壳体的破碎参数,具有广泛的用途。由图 3还可以看出,当C/M比值为0.33和0.38时,破碎参数Cu值偏低。这是因为这两组壳体的直径较大,毛坯热锻后冷却特别慢,温度不均匀导致组织中铁素体含量增多,并呈块状形态,阻碍了裂纹扩展与贯通,最终造成壳体整体的破碎性降低。

    为研究端部效应对破碎性的影响,设计了如图 4所示的圆柱钢壳,其特点是起爆端药柱与壳体齐平。所有壳体分为两组:一组壁厚t固定,C/M比值变化,考察C/M比值对壳体破碎性的影响;另一组C/M比值保持不变,壁厚变化,考察壁厚对壳体破碎性的影响。壳体尺寸如表 2所示,得到的破碎性结果如图 5所示。可以看出, 当存在端部效应时,壳体破碎性随C/M比值的增大而提高,单位长度修正Payman破碎参数CuC/M比值同样可拟合成直线关系,其方程可表示为

    Cu=4.7+93.1C/M
    (5)
    图  4  带端部效应的圆柱钢壳结构
    Figure  4.  Schematic of steel shell with end effect
    表  2  考虑端部效应的壳体尺寸及装药条件
    Table  2.  Dimensions of shell with end effect and charge
    No. D/mm d/mm L/mm t/mm C/M
    1 30.64 20.64 60 5 0.18
    2 40.13 30.13 60 5 0.28
    3 49.52 39.52 60 5 0.38
    4 58.84 48.84 60 5 0.48
    5 32.11 24.11 60 4 0.28
    6 48.16 36.16 60 6 0.28
    7 56.19 42.19 60 7 0.28
    下载: 导出CSV 
    | 显示表格
    图  5  端部效应对壳体破碎参数Cu的影响
    Figure  5.  Influence of end effect on the normalized Payman fragmentation parameter Cu

    图 5中虚线为(3)式拟合直线,表示壳体不存在端部效应时,其破碎参数CuC/M比值的变化关系。由此可以得出,无论C/M比值如何变化,端部效应将导致壳体破碎性能降低。这是因为该条件下装药起爆不能立刻达到最高压力,导致壳体起爆端不能及时断裂形成破片,整体破碎性能变小。需要注意的是,图 5中两条直线的斜率分别为92.8和93.1,近似相等,意味着不管C/M比值多大,由端部效应引起破碎参数Cu的降低量是个常数。

    如果忽略两条直线斜率的微小差别,将(3)式与(5)式相减,即可得到如下关系式

    Cu_end=Cu34a
    (6)

    式中:Cu_endCu分别为相同C/M比值条件下存在端部效应和无端部效应的破碎参数,a为材料与炸药组合的特性常数。

    C/M比值保持不变时,破碎参数Cu随壳体壁厚的变化趋势如图 6所示。可以看出,Cu与壁厚的关系基本为一条水平直线,具有很小的正斜率,表明端部效应与壁厚无关。

    图  6  壁厚对壳体破碎参数Cu的影响
    Figure  6.  Influence of wall thickness on the normalized Payman fragmentation parameter Cu

    为考察无装药部分对壳体破碎性的影响,设计了如图 7所示的圆柱钢壳。圆柱钢壳共分为3组:(1)壁厚t及无装药部分长度L′固定,C/M比值变化;(2)壁厚及C/M比值固定,无装药部分长度变化;(3) C/M比值及无装药部分长度固定,壁厚变化。壳体尺寸及装药条件见表 3

    图  7  带无装药部分的圆柱钢壳结构
    Figure  7.  Schematic of steel shell with charge vacancy
    表  3  考虑无装药部分的壳体尺寸及装药条件
    Table  3.  Dimensions of shell with charge vacancy and charge
    No. D/mm d/mm L/mm L′/mm t/mm C/M
    1 30.64 20.64 60 30 5 0.18
    40.13 30.13 60 30 5 0.28
    49.52 39.52 60 30 5 0.38
    58.84 48.84 60 30 5 0.48
    2 40.13 30.13 60 10 5 0.28
    40.13 30.13 60 20 5 0.28
    40.13 30.13 60 30 5 0.28
    40.13 30.13 60 40 5 0.28
    3 32.11 24.11 60 30 4 0.28
    40.13 30.13 60 30 5 0.28
    48.16 36.16 60 30 6 0.28
    56.19 42.19 60 30 7 0.28
    下载: 导出CSV 
    | 显示表格

    壳体装药部位及无装药部位的单位长度修正Payman破碎参数CuC/M比值的关系如图 8所示。可以看出,无装药部分的破碎参数Cu较小且变化不大,而壳体装药部分的破碎参数CuC/M比值之间依然存在线性关系,并且可用下式表示

    Cu=4.8+91.7C/M
    (7)
    图  8  壳体破碎参数CuC/M比值的关系
    Figure  8.  Variation of normalized Payman fragmentation parameter Cu with C/M ratio

    将(7)式与(5)式做对比发现,两者的截距及斜率几乎相等,因此可以近似认为壳体装药部分的破碎参数与C/M比值的关系和具有端部效应的壳体完全相同,即无装药部分的存在对装药部分的破碎性没有任何影响。对回收的破片仔细观察发现,壳体破碎时主要沿装药与无装药的连接处断裂,不产生既包括装药部分又包括无装药部分的破片,因此装药部分的破碎性与具有端部效应的壳体是等同的。

    当装药部分的C/M比值和无装药部分长度L′保持不变时,壳体的破碎参数Cu随壁厚的变化关系如图 9所示。随着壳体壁厚的增加,装药部分及无装药部分的破碎性几乎保持不变,表明壳体壁厚改变时无装药部分对装药部分的破碎性无影响。对于无装药部分长度不同的壳体,其破碎性参数变化如图 10所示,可以看出,当无装药部分长度增加时,装药部分的破碎参数几乎不变。因此可得出,无装药部分长度不影响壳体装药部分的破碎性能。

    图  9  壳体破碎参数Cu与壁厚的关系
    Figure  9.  Variation of normalized Payman fragmentation parameter Cu with wall thickness
    图  10  壳体破碎参数Cu与无装药部分长度的关系
    Figure  10.  Variation of normalized Payman fragmentation parameter Cu with length of charge vacancy

    综合图 8图 9图 10还可以得出,无装药部分壳体的破碎参数事实上很小。当装药部分壳体向外膨胀时,无装药部分受影响而被“撕裂”成破片。由于两部分壳体向外膨胀的加速度相差悬殊,所以沿两部分的连接处断裂。因此可近似认为,装药部分壳体等效于存在端部效应的壳体。无装药部分的破碎性则主要取决于壳体材料本身性质,C/M比值即使有影响也不会很明显,而长度和壁厚的变化虽然会影响壳体质量和破片大小,但总破碎参数C0近似相等,因为C0是经过壳体质量(回收破片总质量)修正过的参数。

    针对内爆炸载荷作用下金属壳体的动态碎裂问题,通过圆柱钢壳内爆加载试验研究了不同装药条件对破片质量分布的影响规律,得到如下主要结论。

    (1) 对于不同的给定材料与炸药组合,壳体的单位长度修正Payman破碎参数CuC/M比值均存在线性关系,即Cu=a+bC/M,其中ab为与壳体材料和炸药组合有关的特征常数;

    (2) 无论壁厚和C/M比值如何变化,端部效应使壳体的破碎参数Cu降低至一个定值3a/4;

    (3) 无装药部分对壳体的破碎性影响很小,当无装药部分长度或壁厚发生变化时,壳体的破碎参数Cu近似不变,且CuC/M比值的线性关系同样成立。

  • [1]
    MOLINARI A, MUSQUAR C, SUTTER G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling [J]. International Journal of Plasticity, 2002, 18(4): 443–459. doi: 10.1016/S0749-6419(01)00003-1
    [2]
    王升平. TC4钛合金锯齿形切屑绝热剪切带的微观组织和显微硬度变化 [J]. 中国机械工程, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024

    WANG S P. Investigation on microstructure and microhardness of adiabatic shear band of saw-tooth chip in machining TC4 alloy [J]. China Mechanical Engineering, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024
    [3]
    SEMIATIN S L, LAHOTI G D. Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si [J]. Metallurgical Transactions A, 1981, 12(10): 1705–1717. doi: 10.1007/BF02643753
    [4]
    ME-BAR Y, SHECHTMAN D. On the adiabatic shear of Ti-6Al-4V ballistic targets [J]. Materials Science and Engineering, 1983, 58(2): 181–188. doi: 10.1016/0025-5416(83)90044-7
    [5]
    MURR L E, RAMIREZ A C, GAYTAN S M, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets [J]. Materials Science and Engineering: A, 2009, 516(1/2): 205–216. doi: 10.1016/j.msea.2009.03.051
    [6]
    WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. doi: 10.1007/s11661-007-9271-x
    [7]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [8]
    BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories and applications [M]. Oxford: Pergamon Press, 1992.
    [9]
    DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam: Elsevier, 2012.
    [10]
    WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Cambridge: Cambridge University Press, 2002.
    [11]
    MEYERS M A. Shear bands (thermoplastic shear instabilities) [M]//MEYERS M A. Dynamic Behavior of Materials. John Wiley & Sons Inc., 1994: 448–487.
    [12]
    ANTOLOVICH S D, ARMSTRONG R W. Plastic strain localization in metals: origins and consequences [J]. Progress in Materials Science, 2014, 59: 1–160. doi: 10.1016/j.pmatsci.2013.06.001
    [13]
    TIMOTHY S P. The structure of adiabatic shear bands in metals: a critical review [J]. Acta Metallurgica, 1987, 35(2): 301–306. doi: 10.1016/0001-6160(87)90238-0
    [14]
    DUAN C Z, WANG M J. A review of microstructural evolution in the adiabatic shear bands induced by high speed machining [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 97–112. doi: 10.1007/s40195-013-2001-z
    [15]
    XU Y B, ZHANG J H, BAI Y L, et al. Shear localization in dynamic deformation: microstructural evolution [J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811–843. doi: 10.1007/s11661-007-9431-z
    [16]
    DUFFY J. Experimental studies of shear band formation through temperature measurements and high speed photography [J]. Journal de Physique Ⅳ, 1991, 1(C3): 645–652. doi: 10.1051/jp4:1991390
    [17]
    RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. doi: 10.1007/s10704-010-9475-8
    [18]
    钟杰, 叶雁, 李作友. 红外热成像技术测量绝热剪切带温度的综述 [J]. 高能量密度物理, 2010(1): 43–48.

    ZHONG J, YE Y, LI Z Y. Review of measurement of adiabatic shear band temperature by infrared thermal imaging [J]. High Energy Density Physics, 2010(1): 43–48.
    [19]
    谭成文, 王富耻, 李树奎. 绝热剪切变形局部化研究进展及发展趋势 [J]. 兵器材料科学与工程, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016

    TAN C W, WANG F C, LI S K. Progresses and trends in researches on adiabatic shear deformation [J]. Ordnance Material Science and Engineering, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016
    [20]
    索涛, 汪存显, 杭超, 等. 材料动态变形中的绝热剪切带研究现状 [J]. 机械科学与技术, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101

    SUO T, WANG C X, HANG C, et al. The research status of adiabatic shear band in dynamic deformation [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101
    [21]
    肖大武, 李英雷, 蔡灵仓. 绝热剪切研究进展 [J]. 实验力学, 2010, 25(4): 463–475.

    XIAO D W, LI Y L, CAI L C. Progress in research on adiabatic shearing [J]. Journal of Experimental Mechanics, 2010, 25(4): 463–475.
    [22]
    杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [23]
    RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [24]
    MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2/3): 135–145. doi: 10.1016/0167-6636(94)90054-X
    [25]
    RITTEL D. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers [J]. Mechanics of Materials, 1999, 31(2): 131–139. doi: 10.1016/S0167-6636(98)00063-5
    [26]
    LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. doi: 10.1016/S0022-5096(98)00044-1
    [27]
    HODOWANY J, RAVICHANDRAN G, ROSAKIS A J, et al. Partition of plastic work into heat and stored energy in metals [J]. Experimental Mechanics, 2000, 40(2): 113–123. doi: 10.1007/BF02325036
    [28]
    MACDOUGALL D A S, HARDING J. The measurement of specimen surface temperature in high-speed tension and torsion tests [J]. International Journal of Impact Engineering, 1998, 21(6): 473–488. doi: 10.1016/S0734-743X(98)00007-4
    [29]
    TAYLOR G I, QUINNEY H. The latent energy remaining in a metal after cold working [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 143(849): 307–326. doi: 10.1098/rspa.1934.0004
    [30]
    RITTEL D, ZHANG L H, OSOVSKI S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 96–114. doi: 10.1016/j.jmps.2017.06.016
    [31]
    GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part I: direct observation of strain localization and energy dissipation measurements [J]. Mechanics of Materials, 1988, 7(1): 59–71. doi: 10.1016/0167-6636(88)90006-3
    [32]
    RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. doi: 10.1016/j.mechmat.2008.03.002
    [33]
    GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. doi: 10.1016/S0894-9166(12)60027-5
    [34]
    BAI Y L, XUE Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [35]
    WU X D, LI L X, LIU W H, et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting [J]. Materials Science and Engineering: A, 2018, 732: 91–98. doi: 10.1016/j.msea.2018.06.087
    [36]
    SHEN J, KONDOH K, JONES T L, et al. Effect of strain rate on the mechanical properties of magnesium alloy AMX602 [J]. Materials Science and Engineering: A, 2016, 649: 338–348. doi: 10.1016/j.msea.2015.10.022
    [37]
    WEI Q, KECSKES L J, RAMESH K T. Effect of low-temperature rolling on the propensity to adiabatic shear banding of commercial purity tungsten [J]. Materials Science and Engineering: A, 2013, 578: 394–401. doi: 10.1016/j.msea.2013.04.109
    [38]
    LI Z Z, WANG B F, ZHAO S T, et al. Dynamic deformation and failure of ultrafine-grained titanium [J]. Acta Materialia, 2017, 125: 210–218. doi: 10.1016/j.actamat.2016.11.041
    [39]
    WEI Q, KECSKES L, JIAO T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Materialia, 2004, 52(7): 1859–1869. doi: 10.1016/j.actamat.2003.12.025
    [40]
    MALIK A, WANG Y W, CHENG H W, et al. Microstructural evolution of ultra-fine grained Mg-6.62Zn-0.6Zr alloy on the basis of adiabatic rise in temperature under dynamic loading [J]. Vacuum, 2019, 168: 108810. doi: 10.1016/j.vacuum.2019.108810
    [41]
    XU Z J, LIU Y, HU H Z, et al. Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges [J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 184–204. doi: 10.1016/j.jmps.2019.05.005
    [42]
    JIANG L H, YANG Y, WANG Z, et al. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy [J]. Materials Science and Engineering: A, 2018, 711: 317–324. doi: 10.1016/j.msea.2017.10.111
    [43]
    WANG X B. Temperature distribution in adiabatic shear band for ductile metal based on Johnson-Cook and gradient plasticity models [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 333–338. doi: 10.1016/S1003-6326(06)60057-5
    [44]
    MEYERS M A, SUBHASH G, KAD B K, et al. Evolution of microstructure and shear-band formation in α-hcp titanium [J]. Mechanics of Materials, 1994, 17(2/3): 175–193. doi: 10.1016/0167-6636(94)90058-2
    [45]
    MEYERS M A, ANDRADE U R, CHOKSHI A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2881–2893. doi: 10.1007/BF02669646
    [46]
    LINS J F C, SANDIM H R Z, KESTENBACH H J, et al. A microstructural investigation of adiabatic shear bands in an interstitial free steel [J]. Materials Science and Engineering: A, 2007, 457(1/2): 205–218. doi: 10.1016/j.msea.2006.12.019
    [47]
    HINES J A, VECCHIO K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Materialia, 1997, 45(2): 635–649. doi: 10.1016/S1359-6454(96)00193-0
    [48]
    MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. doi: 10.1016/S1359-6454(02)00526-8
    [49]
    PÉREZ-PRADO M T, HINES J A, VECCHIO K S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys [J]. Acta Materialia, 2001, 49(15): 2905–2917. doi: 10.1016/S1359-6454(01)00215-4
    [50]
    KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. doi: 10.1016/S0167-6636(97)00036-7
    [51]
    RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum [J]. Materials Science and Engineering: A, 2007, 447(1/2): 65–70. doi: 10.1016/j.msea.2006.10.064
    [52]
    GHOSH D, KINGSTEDT O T, RAVICHANDRAN G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(1): 14–19. doi: 10.1007/s11661-016-3825-8
    [53]
    ZHANG L H, RITTEL D, OSOVSKI S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys [J]. Materials Science and Engineering: A, 2018, 729: 94–101. doi: 10.1016/j.msea.2018.05.007
    [54]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [55]
    NIETO-FUENTES J C, RITTEL D, OSOVSKI S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018, 108: 55–69. doi: 10.1016/j.ijplas.2018.04.012
    [56]
    ZHANG T, GUO Z R, YUAN F P, et al. Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology [J]. Acta Mechanica Sinica, 2018, 34(2): 327–333. doi: 10.1007/s10409-017-0673-8
    [57]
    RAVICHANDRAN G, ROSAKIS A J, HODOWANY J, et al. On the conversion of plastic work into heat during high-strain-rate deformation [J]. AIP Conference Proceedings, 2002, 620(1): 557–562. doi: 10.1063/1.1483600
    [58]
    NIETO-FUENTES J C, OSOVSKI S, VENKERT A, et al. Reassessment of the dynamic thermomechanical conversion in metals [J]. Physical Review Letters, 2019, 123(25): 255502. doi: 10.1103/PhysRevLett.123.255502
    [59]
    BEVER M B, HOLT D L, TITCHENER A L. The stored energy of cold work [J]. Progress in Materials Science, 1973, 17: 5–177. doi: 10.1016/0079-6425(73)90001-7
    [60]
    LIEOU C K C, MOURAD H M, BRONKHORST C A. Strain localization and dynamic recrystallization in polycrystalline metals: thermodynamic theory and simulation framework [J]. International Journal of Plasticity, 2019, 119: 171–187. doi: 10.1016/j.ijplas.2019.03.005
    [61]
    LANGER J S, BOUCHBINDER E, LOOKMAN T. Thermodynamic theory of dislocation-mediated plasticity [J]. Acta Materialia, 2010, 58(10): 3718–3732. doi: 10.1016/j.actamat.2010.03.009
    [62]
    贾力, 方肇洪, 钱兴华. 高等传热学[M]. 北京: 高等教育出版社, 2003.

    JIA L, FANG Z H, QIAN X H. Advanced heat transfer [M]. Beijing: Higher Education Press, 2003.
    [63]
    NEMAT-NASSER S, ISAACS J B, LIU M Q. Microstructure of high-strain, high-strain-rate deformed tantalum [J]. Acta Materialia, 1998, 46(4): 1307–1325. doi: 10.1016/S1359-6454(97)00746-5
    [64]
    LI Z Z, ZHAO S T, WANG B F, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium [J]. Acta Materialia, 2019, 181: 408–422. doi: 10.1016/j.actamat.2019.09.011
    [65]
    侯镇冰, 何绍杰, 李恕先. 固体热传导[M]. 上海: 上海科学技术出版社, 1984.

    HOU Z B. Solid heat conduction [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984.
    [66]
    LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. doi: 10.1038/nmat1536
    [67]
    ECKERT E R G. Heat and mass transfer [M]. 2nd ed. New York: McGraw-Hill, 1959.
    [68]
    CUSHMAN-ROISIN B, BECKERS J M. Diffusive processes [J]. International Geophysics, 2011, 101: 131–161. doi: 10.1016/B978-0-12-088759-0.00005-5
    [69]
    CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. 2nd ed. Oxford: Oxford University Press, 1959.
    [70]
    WANG Q, OLIVIER H, EINHOFF J, et al. Influence of test model material on the accuracy of transient heat transfer measurements in impulse facilities [J]. Experimental Thermal and Fluid Science, 2019, 104: 59–66. doi: 10.1016/j.expthermflusci.2019.02.013
    [71]
    WRIGHT W J, SCHWARZ R B, NIX W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Materials Science and Engineering: A, 2001, 319/320/321: 229–232. doi: 10.1016/S0921-5093(01)01066-8
    [72]
    杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [73]
    BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. doi: 10.1016/0022-5096(82)90029-1
    [74]
    CLIFTON R J, DUFFY J, HARTLEY K A, et al. On critical conditions for shear band formation at high strain rates [J]. Scripta Metallurgica, 1984, 18(5): 443–448. doi: 10.1016/0036-9748(84)90418-6
    [75]
    WALTER J W. Numerical experiments on adiabatic shear band formation in one dimension [J]. International Journal of Plasticity, 1992, 8(6): 657–693. doi: 10.1016/0749-6419(92)90023-6
    [76]
    WRIGHT T W, BATRA R C. The initiation and growth of adiabatic shear bands [J]. International Journal of Plasticity, 1985, 1(3): 205–212. doi: 10.1016/0749-6419(85)90003-8
    [77]
    WRIGHT T W. Shear band susceptibility: work hardening materials [J]. International Journal of Plasticity, 1992, 8(5): 583–602. doi: 10.1016/0749-6419(92)90032-8
    [78]
    GUO Y Z, LI Y L, PAN Z, et al. A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials [J]. Mechanics of Materials, 2010, 42(11): 1020–1029. doi: 10.1016/j.mechmat.2010.09.002
    [79]
    JOSHI S P, RAMESH K T. Rotational diffusion and grain size dependent shear instability in nanostructured materials [J]. Acta Materialia, 2008, 56(2): 282–291. doi: 10.1016/j.actamat.2007.09.031
    [80]
    ZHOU F, WRIGHT T W, RAMESH K T. A numerical methodology for investigating the formation of adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(5): 904–926. doi: 10.1016/j.jmps.2005.12.002
    [81]
    ZHOU F, WRIGHT T W, RAMESH K T. The formation of multiple adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1376–1400. doi: 10.1016/j.jmps.2006.01.006
    [82]
    杨扬, 程信林, 安宁龙. TB2钛合金绝热剪切行为的数值模拟 [J]. 中国有色金属学报, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003

    YANG Y, CHENG X L, AN N L. Numerical simulation on adiahatic shearing behavior of TB2 [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003
    [83]
    ZHOU M, RAVICHANDRAN G, ROSAKIS A J. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulations [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007–1021, 1023–1032. doi: 10.1016/0022-5096(96)00004-X
    [84]
    CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. doi: 10.1016/j.jmps.2004.02.013
    [85]
    BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
    [86]
    XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. doi: 10.1016/j.ijimpeng.2016.11.012
    [87]
    XU Z J, LIU Y, SUN Z Y, et al. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–38. doi: 10.1016/j.ijimpeng.2018.04.003
    [88]
    许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445

    XU Z J, DING X Y, ZHANG W Q, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445
    [89]
    张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107

    ZHANG W Q, XU Z J, SUN Z Y, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107
    [90]
    ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [91]
    陈浩森, 郭亚洲, 朱盛鑫, 等. 多点式高速红外测温系统研制 [J]. 实验力学, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220

    CHEN H S, GUO Y Z, ZHU S X, et al. On the development of multi-point high speed infrared temperature measurement system [J]. Journal of Experimental Mechanics, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220
    [92]
    KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method & thermodynamic investigations of amorphous polymers during high rate deformation [J]. Polymer, 2014, 55(10): 2514–2522. doi: 10.1016/j.polymer.2014.03.058
    [93]
    RABIN Y, RITTEL D. A model for the time response of solid-embedded thermocouples [J]. Experimental Mechanics, 1999, 39(2): 132–136. doi: 10.1007/BF02331116
    [94]
    CHOU S C, ROBERTSON K D, RAINEY J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics [J]. Experimental Mechanics, 1973, 13(10): 422–432. doi: 10.1007/BF02324886
    [95]
    RITTEL D. Transient temperature measurement using embedded thermocouples [J]. Experimental Mechanics, 1998, 38(2): 73–78. doi: 10.1007/BF02321647
    [96]
    SASSI S, TARFAOUI M, BEN YAHIA H. In-situ heat dissipation monitoring in adhesively bonded composite joints under dynamic compression loading using SHPB [J]. Composites Part B: Engineering, 2018, 154: 64–76. doi: 10.1016/j.compositesb.2018.07.039
    [97]
    CAO B, IWAMOTO T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression [J]. International Journal of Impact Engineering, 2019, 132: 103284. doi: 10.1016/j.ijimpeng.2019.04.026
    [98]
    CAO B, IWAMOTO T. A new method to measure volume resistivity during tension for strain rate sensitivity in deformation and transformation behavior of Fe-28Mn-6Si-5Cr shape memory alloy [J]. International Journal of Mechanical Sciences, 2018, 146/147: 445–454. doi: 10.1016/j.ijmecsci.2017.09.020
    [99]
    SHOCKEY D A, KALTHOFF J F, KLEMM W, et al. Simultaneous measurements of stress intensity and toughness for fast-running cracks in steel [J]. Experimental Mechanics, 1983, 23(2): 140–145. doi: 10.1007/BF02320401
    [100]
    RITTEL D. Experimental investigation of transient thermoelastic effects in dynamic fracture [J]. International Journal of Solids and Structures, 1998, 35(22): 2959–2973. doi: 10.1016/S0020-7683(97)00352-1
    [101]
    AY H, YANG W J. Heat transfer and life of metal cutting tools in turning [J]. International Journal of Heat and Mass Transfer, 1998, 41(3): 613–623. doi: 10.1016/S0017-9310(97)00105-1
    [102]
    DEWES R C, NG E, CHUA K S, et al. Temperature measurement when high speed machining hardened mould/die steel [J]. Journal of Materials Processing Technology, 1999, 92/93: 293–301. doi: 10.1016/S0924-0136(99)00116-8
    [103]
    MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. doi: 10.1016/0022-5096(88)90012-9
    [104]
    HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. doi: 10.1016/0022-5096(87)90009-3
    [105]
    DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. doi: 10.1016/0921-5093(92)90026-W
    [106]
    ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates–Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. doi: 10.1016/0022-5096(96)00003-8
    [107]
    GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding [J]. Physical Review E, 2001, 64(3): 036128. doi: 10.1103/PhysRevE.64.036128
    [108]
    RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading–adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [109]
    SEIDT J D, KUOKKALA V T, SMITH J L, et al. Synchronous full-field strain and temperature measurement in tensile tests at low, intermediate and high strain rates [J]. Experimental Mechanics, 2017, 57(2): 219–229. doi: 10.1007/s11340-016-0237-z
    [110]
    刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperatureunder shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05
    [111]
    付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [112]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [113]
    RITTEL D, RAVICHANDRAN G, VENKERT A, et al. The mechanical response of pure iron at high strain rates under dominant shear [J]. Materials Science and Engineering: A, 2006, 432(1/2): 191–201. doi: 10.1016/j.msea.2006.05.154
    [114]
    ZHU S X, GUO Y Z, RUAN Q C, et al. Formation of adiabatic shear band within Ti-6Al-4V: an in-situ study with high-speed photography and temperature measurement [J]. International Journal of Mechanical Sciences, 2020, 171: 105401. doi: 10.1016/j.ijmecsci.2019.105401
    [115]
    MACDOUGALL D A S, HARDING J. A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(5): 1157–1185. doi: 10.1016/S0022-5096(98)00086-6
    [116]
    ZEHNDER A T, GUDURU P R, ROSAKIS A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762–3768. doi: 10.1063/1.1310350
    [117]
    REGEV A, RITTEL D. Simultaneous transient temperature sensing of impacted polymers using infrared detectors and thermocouples [J]. Experimental Mechanics, 2008, 48(5): 675–682. doi: 10.1007/s11340-007-9096-y
    [118]
    GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. doi: 10.1016/0167-6636(88)90007-5
    [119]
    NEMAT-NASSER S, CHANG S N. Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals [J]. Mechanics of Materials, 1990, 10(1/2): 1–17. doi: 10.1016/0167-6636(90)90013-6
    [120]
    ANDRADE U, MEYERS M A, VECCHIO K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metallurgica et Materialia, 1994, 42(9): 3183–3195. doi: 10.1016/0956-7151(94)90417-0
    [121]
    MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
    [122]
    XU Y B, ZHONG W L, CHEN Y J, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy [J]. Materials Science and Engineering: A, 2001, 299(1/2): 287–295. doi: 10.1016/S0921-5093(00)01412-X
    [123]
    HWANG B, LEE S, KIM Y C, et al. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing [J]. Materials Science and Engineering: A, 2006, 441(1/2): 308–320. doi: 10.1016/j.msea.2006.08.045
    [124]
    LIU S L, PAN Z L, ZHAO Y H, et al. Effect of strain rate on the mechanical properties of a gum metal with various microstructures [J]. Acta Materialia, 2017, 132: 193–208. doi: 10.1016/j.actamat.2017.04.052
    [125]
    LIU S L, GUO Y Z, PAN Z L, et al. Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal [J]. Journal of Materials Science & Technology, 2020, 54: 31–39. doi: 10.1016/j.jmst.2020.03.042
    [126]
    RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. doi: 10.1103/PhysRevLett.101.165501
  • Relative Articles

    [1]LI Mao-Sheng, ZHANG Chun-Bin. Equation of State of Rarefactional Region at T=0 K[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 24-28 . doi: 10.11858/gywlxb.1990.01.004
    [2]FU Shi-Qin, JIN Xiao-Gang, CHEN Pan-Sen. Studies on the Shock Adiabatics and Equation-of-State of Nandan Iron Meteorite[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 226-233 . doi: 10.11858/gywlxb.1989.03.008
    [3]LI Feng-Ying, WANG Ru-Ju, GU Hui-Cheng, WANG Ji-Fang, ZHANG Liang-Kun, CHEN Zhi-Ming, LIAN Jing-Yu, QU Cui-Feng. The Phase Transition of PSZT Ceramics under High Pressure[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 152-155 . doi: 10.11858/gywlxb.1989.02.008
    [4]WANG Ru-Ju, LI Feng-Ying, YAO Yu-Shu, WANG Ji-Fang, LIN Xue-Shi. Studies of Phase Transition in LADTGS Crystal with Ultrasonic Method[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 156-158 . doi: 10.11858/gywlxb.1989.02.009
    [5]DONG Yu-Bin, SU Lin-Xiang, CHEN Da-Nian, JING Fu-Qian, HAN Jun-Wan, FENG Jia-Bo. Numerical Simulation on the Spallation of a Steel Cylindrical Shell Imploded under Slipping Detonation[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 1-10 . doi: 10.11858/gywlxb.1989.01.001
    [6]ZHOU Zhi-Kui, CHEN Qiu-Hua. Numerical Simulation of the Performance of Electromagnetic Railguns[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 308-314 . doi: 10.11858/gywlxb.1989.04.008
    [7]GU Cheng-Gang, JING Fu-Qian, XIE Pan-Hai, WANG Jin-Gui. Resistivity and Hugoniot Measurements of Polytetrofluoroethylene (Teflon) under Shock Compression[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 31-41 . doi: 10.11858/gywlxb.1989.01.005
    [8]SUN Feng-Guo, LI Yong. The Calculation of Thermal Expansion Coefficients of Several Alkali Halide Crystals[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 148-151 . doi: 10.11858/gywlxb.1989.02.007
    [9]JIN Xiao-Gang, LIU Quan-Zhong, YANG Mu-Song, QIN Dao-Kai, XIAO Xue-Zheng. Shock Compression Measurement for 2169 Steel at 2 TPa[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 17-21 . doi: 10.11858/gywlxb.1988.01.003
    [10]GOU Bing-Cong, GOU Qing-Quan. Calculations of the Energy and Polarizability for the H-Like Atom under High Pressures[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 248-253 . doi: 10.11858/gywlxb.1988.03.007
    [11]DONG Yu-Bin, ZAHNG Wan-Jia, JING Fu-Qian, HAN Jun-Wan, CHEN Da-Nian, SU Lin-Xiang, FENG Jia-Bo. Numerical Analysis for Dynamic Damage Processes and LY-12 Aluminum Spallations[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 305-312 . doi: 10.11858/gywlxb.1988.04.003
    [12]WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of Structural Transitions[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 131-136 . doi: 10.11858/gywlxb.1988.02.006
    [13]GU Yuan, WANG Yong-Gang, MAO Chu-Sheng, NI Yuan-Long, WU Feng-Chun, MA Min-Xun. Preliminary Experiments on the Equation of State of Materials at High-Pressure Produced by Laser Driven Shock Waves[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011
    [14]YIN Xiu-Jun, SHEN Zhong-Yi, ZHANG Yun, HONG Jing-Xin. A Measurement of the Curie Temperature in Ferromagnetic Materials[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 259-263 . doi: 10.11858/gywlxb.1988.03.009
    [15]ZHOU Ben-Lian. Theoretical and Experimental Studies of the Dynamic Process of Thermal Expansion[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 119-122 . doi: 10.11858/gywlxb.1988.02.004
    [16]WU Shao-Zeng, ZHANG Cheng-Xiang, WU Li-Xin. Calculation of the Gruneisen Parameter and Its Pressure Dependence for NaCl[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 155-164 . doi: 10.11858/gywlxb.1987.02.009
    [17]XU Ji-An. The Effect of Pressure Transmitting Medium on the High Pressure Experiments in Diamond Anvil Cell (DAC): Experimental Measurement of the Equation of State (EOS) of Pyrope[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 97-101 . doi: 10.11858/gywlxb.1987.02.001
    [18]WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003
    [19]YU Wan-Rui, ZHANG Ruo-Qi, LIU Ge-San. Monte-Carlo Investigation of Interaction of Relativistic Electron-Beam with Solid and Calculation of Its Mechanical Effects[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 58-70 . doi: 10.11858/gywlxb.1987.01.008
    [20]ZHANG Wan-Xiang, ZHANG Chun-Bin, LI Shao-Meng, CHEN Hao. Self-Consistent LMTO Calculations of the Equation of State at Zero Temperature for Copper[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 13-21 . doi: 10.11858/gywlxb.1987.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views(4351) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return