Volume 35 Issue 4
Aug 2021
Turn off MathJax
Article Contents
HU Bo, GUO Yazhou, WEI Qiuming, SUO Tao, LI Yulong. Temperature Rise during Adiabatic Shear Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728
Citation: HU Bo, GUO Yazhou, WEI Qiuming, SUO Tao, LI Yulong. Temperature Rise during Adiabatic Shear Deformation[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040106. doi: 10.11858/gywlxb.20210728

Temperature Rise during Adiabatic Shear Deformation

doi: 10.11858/gywlxb.20210728
  • Received Date: 28 Feb 2021
  • Rev Recd Date: 02 Apr 2021
  • Temperature rise is an important feature of adiabatic shear phenomenon for many materials. Understanding the role of temperature rise in adiabatic shear is of great significance, because it helps us to get insight into the initiation and evolution mechanism of adiabatic shear band(ASB) and to predict accurately the dynamic failure of materials and structures. Generally speaking, the temperature rise in adiabatic shear deformation can be divided into three stages: uniform deformation stage, shear localization stage, and post-ASB stage. Theoretical calculation, numerical method, experimental measurement and relation with microstructural evolution of temperature rise during adiabatic shear deformation are reviewed. By this review, inspirations and reference are expected for future research work on adiabatic shear failure and related fields.

     

  • loading
  • [1]
    MOLINARI A, MUSQUAR C, SUTTER G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling [J]. International Journal of Plasticity, 2002, 18(4): 443–459. doi: 10.1016/S0749-6419(01)00003-1
    [2]
    王升平. TC4钛合金锯齿形切屑绝热剪切带的微观组织和显微硬度变化 [J]. 中国机械工程, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024

    WANG S P. Investigation on microstructure and microhardness of adiabatic shear band of saw-tooth chip in machining TC4 alloy [J]. China Mechanical Engineering, 2012, 23(9): 1117–1121. doi: 10.3969/j.issn.1004-132X.2012.09.024
    [3]
    SEMIATIN S L, LAHOTI G D. Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si [J]. Metallurgical Transactions A, 1981, 12(10): 1705–1717. doi: 10.1007/BF02643753
    [4]
    ME-BAR Y, SHECHTMAN D. On the adiabatic shear of Ti-6Al-4V ballistic targets [J]. Materials Science and Engineering, 1983, 58(2): 181–188. doi: 10.1016/0025-5416(83)90044-7
    [5]
    MURR L E, RAMIREZ A C, GAYTAN S M, et al. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets [J]. Materials Science and Engineering: A, 2009, 516(1/2): 205–216. doi: 10.1016/j.msea.2009.03.051
    [6]
    WALLEY S M. Shear localization: a historical overview [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2629–2654. doi: 10.1007/s11661-007-9271-x
    [7]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [8]
    BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories and applications [M]. Oxford: Pergamon Press, 1992.
    [9]
    DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam: Elsevier, 2012.
    [10]
    WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Cambridge: Cambridge University Press, 2002.
    [11]
    MEYERS M A. Shear bands (thermoplastic shear instabilities) [M]//MEYERS M A. Dynamic Behavior of Materials. John Wiley & Sons Inc., 1994: 448–487.
    [12]
    ANTOLOVICH S D, ARMSTRONG R W. Plastic strain localization in metals: origins and consequences [J]. Progress in Materials Science, 2014, 59: 1–160. doi: 10.1016/j.pmatsci.2013.06.001
    [13]
    TIMOTHY S P. The structure of adiabatic shear bands in metals: a critical review [J]. Acta Metallurgica, 1987, 35(2): 301–306. doi: 10.1016/0001-6160(87)90238-0
    [14]
    DUAN C Z, WANG M J. A review of microstructural evolution in the adiabatic shear bands induced by high speed machining [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 97–112. doi: 10.1007/s40195-013-2001-z
    [15]
    XU Y B, ZHANG J H, BAI Y L, et al. Shear localization in dynamic deformation: microstructural evolution [J]. Metallurgical and Materials Transactions A, 2008, 39(4): 811–843. doi: 10.1007/s11661-007-9431-z
    [16]
    DUFFY J. Experimental studies of shear band formation through temperature measurements and high speed photography [J]. Journal de Physique Ⅳ, 1991, 1(C3): 645–652. doi: 10.1051/jp4:1991390
    [17]
    RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. doi: 10.1007/s10704-010-9475-8
    [18]
    钟杰, 叶雁, 李作友. 红外热成像技术测量绝热剪切带温度的综述 [J]. 高能量密度物理, 2010(1): 43–48.

    ZHONG J, YE Y, LI Z Y. Review of measurement of adiabatic shear band temperature by infrared thermal imaging [J]. High Energy Density Physics, 2010(1): 43–48.
    [19]
    谭成文, 王富耻, 李树奎. 绝热剪切变形局部化研究进展及发展趋势 [J]. 兵器材料科学与工程, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016

    TAN C W, WANG F C, LI S K. Progresses and trends in researches on adiabatic shear deformation [J]. Ordnance Material Science and Engineering, 2003, 26(5): 62–67. doi: 10.3969/j.issn.1004-244X.2003.05.016
    [20]
    索涛, 汪存显, 杭超, 等. 材料动态变形中的绝热剪切带研究现状 [J]. 机械科学与技术, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101

    SUO T, WANG C X, HANG C, et al. The research status of adiabatic shear band in dynamic deformation [J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(1): 1–9. doi: 10.13433/j.cnki.1003-8728.2016.0101
    [21]
    肖大武, 李英雷, 蔡灵仓. 绝热剪切研究进展 [J]. 实验力学, 2010, 25(4): 463–475.

    XIAO D W, LI Y L, CAI L C. Progress in research on adiabatic shearing [J]. Journal of Experimental Mechanics, 2010, 25(4): 463–475.
    [22]
    杨扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001

    YANG Y, CHENG X L. Current status and trends in researches on adiabatic shearing [J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 401–408. doi: 10.3321/j.issn:1004-0609.2002.03.001
    [23]
    RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [24]
    MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2/3): 135–145. doi: 10.1016/0167-6636(94)90054-X
    [25]
    RITTEL D. On the conversion of plastic work to heat during high strain rate deformation of glassy polymers [J]. Mechanics of Materials, 1999, 31(2): 131–139. doi: 10.1016/S0167-6636(98)00063-5
    [26]
    LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. doi: 10.1016/S0022-5096(98)00044-1
    [27]
    HODOWANY J, RAVICHANDRAN G, ROSAKIS A J, et al. Partition of plastic work into heat and stored energy in metals [J]. Experimental Mechanics, 2000, 40(2): 113–123. doi: 10.1007/BF02325036
    [28]
    MACDOUGALL D A S, HARDING J. The measurement of specimen surface temperature in high-speed tension and torsion tests [J]. International Journal of Impact Engineering, 1998, 21(6): 473–488. doi: 10.1016/S0734-743X(98)00007-4
    [29]
    TAYLOR G I, QUINNEY H. The latent energy remaining in a metal after cold working [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 143(849): 307–326. doi: 10.1098/rspa.1934.0004
    [30]
    RITTEL D, ZHANG L H, OSOVSKI S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 96–114. doi: 10.1016/j.jmps.2017.06.016
    [31]
    GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part I: direct observation of strain localization and energy dissipation measurements [J]. Mechanics of Materials, 1988, 7(1): 59–71. doi: 10.1016/0167-6636(88)90006-3
    [32]
    RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys [J]. Mechanics of Materials, 2008, 40(8): 629–635. doi: 10.1016/j.mechmat.2008.03.002
    [33]
    GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. doi: 10.1016/S0894-9166(12)60027-5
    [34]
    BAI Y L, XUE Q, XU Y B, et al. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy [J]. Mechanics of Materials, 1994, 17(2/3): 155–164. doi: 10.1016/0167-6636(94)90056-6
    [35]
    WU X D, LI L X, LIU W H, et al. Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting [J]. Materials Science and Engineering: A, 2018, 732: 91–98. doi: 10.1016/j.msea.2018.06.087
    [36]
    SHEN J, KONDOH K, JONES T L, et al. Effect of strain rate on the mechanical properties of magnesium alloy AMX602 [J]. Materials Science and Engineering: A, 2016, 649: 338–348. doi: 10.1016/j.msea.2015.10.022
    [37]
    WEI Q, KECSKES L J, RAMESH K T. Effect of low-temperature rolling on the propensity to adiabatic shear banding of commercial purity tungsten [J]. Materials Science and Engineering: A, 2013, 578: 394–401. doi: 10.1016/j.msea.2013.04.109
    [38]
    LI Z Z, WANG B F, ZHAO S T, et al. Dynamic deformation and failure of ultrafine-grained titanium [J]. Acta Materialia, 2017, 125: 210–218. doi: 10.1016/j.actamat.2016.11.041
    [39]
    WEI Q, KECSKES L, JIAO T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Materialia, 2004, 52(7): 1859–1869. doi: 10.1016/j.actamat.2003.12.025
    [40]
    MALIK A, WANG Y W, CHENG H W, et al. Microstructural evolution of ultra-fine grained Mg-6.62Zn-0.6Zr alloy on the basis of adiabatic rise in temperature under dynamic loading [J]. Vacuum, 2019, 168: 108810. doi: 10.1016/j.vacuum.2019.108810
    [41]
    XU Z J, LIU Y, HU H Z, et al. Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges [J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 184–204. doi: 10.1016/j.jmps.2019.05.005
    [42]
    JIANG L H, YANG Y, WANG Z, et al. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy [J]. Materials Science and Engineering: A, 2018, 711: 317–324. doi: 10.1016/j.msea.2017.10.111
    [43]
    WANG X B. Temperature distribution in adiabatic shear band for ductile metal based on Johnson-Cook and gradient plasticity models [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(2): 333–338. doi: 10.1016/S1003-6326(06)60057-5
    [44]
    MEYERS M A, SUBHASH G, KAD B K, et al. Evolution of microstructure and shear-band formation in α-hcp titanium [J]. Mechanics of Materials, 1994, 17(2/3): 175–193. doi: 10.1016/0167-6636(94)90058-2
    [45]
    MEYERS M A, ANDRADE U R, CHOKSHI A H. The effect of grain size on the high-strain, high-strain-rate behavior of copper [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2881–2893. doi: 10.1007/BF02669646
    [46]
    LINS J F C, SANDIM H R Z, KESTENBACH H J, et al. A microstructural investigation of adiabatic shear bands in an interstitial free steel [J]. Materials Science and Engineering: A, 2007, 457(1/2): 205–218. doi: 10.1016/j.msea.2006.12.019
    [47]
    HINES J A, VECCHIO K S. Recrystallization kinetics within adiabatic shear bands [J]. Acta Materialia, 1997, 45(2): 635–649. doi: 10.1016/S1359-6454(96)00193-0
    [48]
    MEYERS M A, XU Y B, XUE Q, et al. Microstructural evolution in adiabatic shear localization in stainless steel [J]. Acta Materialia, 2003, 51(5): 1307–1325. doi: 10.1016/S1359-6454(02)00526-8
    [49]
    PÉREZ-PRADO M T, HINES J A, VECCHIO K S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys [J]. Acta Materialia, 2001, 49(15): 2905–2917. doi: 10.1016/S1359-6454(01)00215-4
    [50]
    KAPOOR R, NEMAT-NASSER S. Determination of temperature rise during high strain rate deformation [J]. Mechanics of Materials, 1998, 27(1): 1–12. doi: 10.1016/S0167-6636(97)00036-7
    [51]
    RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum [J]. Materials Science and Engineering: A, 2007, 447(1/2): 65–70. doi: 10.1016/j.msea.2006.10.064
    [52]
    GHOSH D, KINGSTEDT O T, RAVICHANDRAN G. Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(1): 14–19. doi: 10.1007/s11661-016-3825-8
    [53]
    ZHANG L H, RITTEL D, OSOVSKI S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys [J]. Materials Science and Engineering: A, 2018, 729: 94–101. doi: 10.1016/j.msea.2018.05.007
    [54]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. doi: 10.1016/j.jmps.2019.103811
    [55]
    NIETO-FUENTES J C, RITTEL D, OSOVSKI S. On a dislocation-based constitutive model and dynamic thermomechanical considerations [J]. International Journal of Plasticity, 2018, 108: 55–69. doi: 10.1016/j.ijplas.2018.04.012
    [56]
    ZHANG T, GUO Z R, YUAN F P, et al. Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology [J]. Acta Mechanica Sinica, 2018, 34(2): 327–333. doi: 10.1007/s10409-017-0673-8
    [57]
    RAVICHANDRAN G, ROSAKIS A J, HODOWANY J, et al. On the conversion of plastic work into heat during high-strain-rate deformation [J]. AIP Conference Proceedings, 2002, 620(1): 557–562. doi: 10.1063/1.1483600
    [58]
    NIETO-FUENTES J C, OSOVSKI S, VENKERT A, et al. Reassessment of the dynamic thermomechanical conversion in metals [J]. Physical Review Letters, 2019, 123(25): 255502. doi: 10.1103/PhysRevLett.123.255502
    [59]
    BEVER M B, HOLT D L, TITCHENER A L. The stored energy of cold work [J]. Progress in Materials Science, 1973, 17: 5–177. doi: 10.1016/0079-6425(73)90001-7
    [60]
    LIEOU C K C, MOURAD H M, BRONKHORST C A. Strain localization and dynamic recrystallization in polycrystalline metals: thermodynamic theory and simulation framework [J]. International Journal of Plasticity, 2019, 119: 171–187. doi: 10.1016/j.ijplas.2019.03.005
    [61]
    LANGER J S, BOUCHBINDER E, LOOKMAN T. Thermodynamic theory of dislocation-mediated plasticity [J]. Acta Materialia, 2010, 58(10): 3718–3732. doi: 10.1016/j.actamat.2010.03.009
    [62]
    贾力, 方肇洪, 钱兴华. 高等传热学[M]. 北京: 高等教育出版社, 2003.

    JIA L, FANG Z H, QIAN X H. Advanced heat transfer [M]. Beijing: Higher Education Press, 2003.
    [63]
    NEMAT-NASSER S, ISAACS J B, LIU M Q. Microstructure of high-strain, high-strain-rate deformed tantalum [J]. Acta Materialia, 1998, 46(4): 1307–1325. doi: 10.1016/S1359-6454(97)00746-5
    [64]
    LI Z Z, ZHAO S T, WANG B F, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium [J]. Acta Materialia, 2019, 181: 408–422. doi: 10.1016/j.actamat.2019.09.011
    [65]
    侯镇冰, 何绍杰, 李恕先. 固体热传导[M]. 上海: 上海科学技术出版社, 1984.

    HOU Z B. Solid heat conduction [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984.
    [66]
    LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. doi: 10.1038/nmat1536
    [67]
    ECKERT E R G. Heat and mass transfer [M]. 2nd ed. New York: McGraw-Hill, 1959.
    [68]
    CUSHMAN-ROISIN B, BECKERS J M. Diffusive processes [J]. International Geophysics, 2011, 101: 131–161. doi: 10.1016/B978-0-12-088759-0.00005-5
    [69]
    CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. 2nd ed. Oxford: Oxford University Press, 1959.
    [70]
    WANG Q, OLIVIER H, EINHOFF J, et al. Influence of test model material on the accuracy of transient heat transfer measurements in impulse facilities [J]. Experimental Thermal and Fluid Science, 2019, 104: 59–66. doi: 10.1016/j.expthermflusci.2019.02.013
    [71]
    WRIGHT W J, SCHWARZ R B, NIX W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Materials Science and Engineering: A, 2001, 319/320/321: 229–232. doi: 10.1016/S0921-5093(01)01066-8
    [72]
    杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006.
    [73]
    BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. doi: 10.1016/0022-5096(82)90029-1
    [74]
    CLIFTON R J, DUFFY J, HARTLEY K A, et al. On critical conditions for shear band formation at high strain rates [J]. Scripta Metallurgica, 1984, 18(5): 443–448. doi: 10.1016/0036-9748(84)90418-6
    [75]
    WALTER J W. Numerical experiments on adiabatic shear band formation in one dimension [J]. International Journal of Plasticity, 1992, 8(6): 657–693. doi: 10.1016/0749-6419(92)90023-6
    [76]
    WRIGHT T W, BATRA R C. The initiation and growth of adiabatic shear bands [J]. International Journal of Plasticity, 1985, 1(3): 205–212. doi: 10.1016/0749-6419(85)90003-8
    [77]
    WRIGHT T W. Shear band susceptibility: work hardening materials [J]. International Journal of Plasticity, 1992, 8(5): 583–602. doi: 10.1016/0749-6419(92)90032-8
    [78]
    GUO Y Z, LI Y L, PAN Z, et al. A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials [J]. Mechanics of Materials, 2010, 42(11): 1020–1029. doi: 10.1016/j.mechmat.2010.09.002
    [79]
    JOSHI S P, RAMESH K T. Rotational diffusion and grain size dependent shear instability in nanostructured materials [J]. Acta Materialia, 2008, 56(2): 282–291. doi: 10.1016/j.actamat.2007.09.031
    [80]
    ZHOU F, WRIGHT T W, RAMESH K T. A numerical methodology for investigating the formation of adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(5): 904–926. doi: 10.1016/j.jmps.2005.12.002
    [81]
    ZHOU F, WRIGHT T W, RAMESH K T. The formation of multiple adiabatic shear bands [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1376–1400. doi: 10.1016/j.jmps.2006.01.006
    [82]
    杨扬, 程信林, 安宁龙. TB2钛合金绝热剪切行为的数值模拟 [J]. 中国有色金属学报, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003

    YANG Y, CHENG X L, AN N L. Numerical simulation on adiahatic shearing behavior of TB2 [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(5): 718–724. doi: 10.3321/j.issn:1004-0609.2004.05.003
    [83]
    ZHOU M, RAVICHANDRAN G, ROSAKIS A J. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulations [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007–1021, 1023–1032. doi: 10.1016/0022-5096(96)00004-X
    [84]
    CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. doi: 10.1016/j.jmps.2004.02.013
    [85]
    BRONKHORST C A, CERRETA E K, XUE Q, et al. An experimental and numerical study of the localization behavior of tantalum and stainless steel [J]. International Journal of Plasticity, 2006, 22(7): 1304–1335. doi: 10.1016/j.ijplas.2005.10.002
    [86]
    XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique [J]. International Journal of Impact Engineering, 2017, 101: 90–104. doi: 10.1016/j.ijimpeng.2016.11.012
    [87]
    XU Z J, LIU Y, SUN Z Y, et al. On shear failure behaviors of an armor steel over a large range of strain rates [J]. International Journal of Impact Engineering, 2018, 118: 24–38. doi: 10.1016/j.ijimpeng.2018.04.003
    [88]
    许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445

    XU Z J, DING X Y, ZHANG W Q, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 654–659. doi: 10.6052/0459-1879-15-445
    [89]
    张炜琪, 许泽建, 孙中岳, 等. Ti-6Al-4V在高应变率下的动态剪切特性及失效机理 [J]. 爆炸与冲击, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107

    ZHANG W Q, XU Z J, SUN Z Y, et al. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates [J]. Explosion and Shock Waves, 2018, 38(5): 1137–1144. doi: 10.11883/bzycj-2017-0107
    [90]
    ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. doi: 10.1016/j.mechmat.2019.103102
    [91]
    陈浩森, 郭亚洲, 朱盛鑫, 等. 多点式高速红外测温系统研制 [J]. 实验力学, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220

    CHEN H S, GUO Y Z, ZHU S X, et al. On the development of multi-point high speed infrared temperature measurement system [J]. Journal of Experimental Mechanics, 2019, 34(2): 240–248. doi: 10.7520/1001-4888-17-220
    [92]
    KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method & thermodynamic investigations of amorphous polymers during high rate deformation [J]. Polymer, 2014, 55(10): 2514–2522. doi: 10.1016/j.polymer.2014.03.058
    [93]
    RABIN Y, RITTEL D. A model for the time response of solid-embedded thermocouples [J]. Experimental Mechanics, 1999, 39(2): 132–136. doi: 10.1007/BF02331116
    [94]
    CHOU S C, ROBERTSON K D, RAINEY J H. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics [J]. Experimental Mechanics, 1973, 13(10): 422–432. doi: 10.1007/BF02324886
    [95]
    RITTEL D. Transient temperature measurement using embedded thermocouples [J]. Experimental Mechanics, 1998, 38(2): 73–78. doi: 10.1007/BF02321647
    [96]
    SASSI S, TARFAOUI M, BEN YAHIA H. In-situ heat dissipation monitoring in adhesively bonded composite joints under dynamic compression loading using SHPB [J]. Composites Part B: Engineering, 2018, 154: 64–76. doi: 10.1016/j.compositesb.2018.07.039
    [97]
    CAO B, IWAMOTO T. An experimental investigation on rate dependency of thermomechanical and Stress-induced martensitic transformation behavior in Fe-28Mn-6Si-5Cr shape memory alloy under compression [J]. International Journal of Impact Engineering, 2019, 132: 103284. doi: 10.1016/j.ijimpeng.2019.04.026
    [98]
    CAO B, IWAMOTO T. A new method to measure volume resistivity during tension for strain rate sensitivity in deformation and transformation behavior of Fe-28Mn-6Si-5Cr shape memory alloy [J]. International Journal of Mechanical Sciences, 2018, 146/147: 445–454. doi: 10.1016/j.ijmecsci.2017.09.020
    [99]
    SHOCKEY D A, KALTHOFF J F, KLEMM W, et al. Simultaneous measurements of stress intensity and toughness for fast-running cracks in steel [J]. Experimental Mechanics, 1983, 23(2): 140–145. doi: 10.1007/BF02320401
    [100]
    RITTEL D. Experimental investigation of transient thermoelastic effects in dynamic fracture [J]. International Journal of Solids and Structures, 1998, 35(22): 2959–2973. doi: 10.1016/S0020-7683(97)00352-1
    [101]
    AY H, YANG W J. Heat transfer and life of metal cutting tools in turning [J]. International Journal of Heat and Mass Transfer, 1998, 41(3): 613–623. doi: 10.1016/S0017-9310(97)00105-1
    [102]
    DEWES R C, NG E, CHUA K S, et al. Temperature measurement when high speed machining hardened mould/die steel [J]. Journal of Materials Processing Technology, 1999, 92/93: 293–301. doi: 10.1016/S0924-0136(99)00116-8
    [103]
    MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. doi: 10.1016/0022-5096(88)90012-9
    [104]
    HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. doi: 10.1016/0022-5096(87)90009-3
    [105]
    DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. doi: 10.1016/0921-5093(92)90026-W
    [106]
    ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates–Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. doi: 10.1016/0022-5096(96)00003-8
    [107]
    GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding [J]. Physical Review E, 2001, 64(3): 036128. doi: 10.1103/PhysRevE.64.036128
    [108]
    RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading–adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. doi: 10.1016/j.mechmat.2007.08.002
    [109]
    SEIDT J D, KUOKKALA V T, SMITH J L, et al. Synchronous full-field strain and temperature measurement in tensile tests at low, intermediate and high strain rates [J]. Experimental Mechanics, 2017, 57(2): 219–229. doi: 10.1007/s11340-016-0237-z
    [110]
    刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperatureunder shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. doi: 10.11883/1001-1455(2014)04-0471-05
    [111]
    付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. doi: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004
    [112]
    GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. doi: 10.1103/PhysRevLett.122.015503
    [113]
    RITTEL D, RAVICHANDRAN G, VENKERT A, et al. The mechanical response of pure iron at high strain rates under dominant shear [J]. Materials Science and Engineering: A, 2006, 432(1/2): 191–201. doi: 10.1016/j.msea.2006.05.154
    [114]
    ZHU S X, GUO Y Z, RUAN Q C, et al. Formation of adiabatic shear band within Ti-6Al-4V: an in-situ study with high-speed photography and temperature measurement [J]. International Journal of Mechanical Sciences, 2020, 171: 105401. doi: 10.1016/j.ijmecsci.2019.105401
    [115]
    MACDOUGALL D A S, HARDING J. A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(5): 1157–1185. doi: 10.1016/S0022-5096(98)00086-6
    [116]
    ZEHNDER A T, GUDURU P R, ROSAKIS A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762–3768. doi: 10.1063/1.1310350
    [117]
    REGEV A, RITTEL D. Simultaneous transient temperature sensing of impacted polymers using infrared detectors and thermocouples [J]. Experimental Mechanics, 2008, 48(5): 675–682. doi: 10.1007/s11340-007-9096-y
    [118]
    GIOVANOLA J H. Adiabatic shear banding under pure shear loading Part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. doi: 10.1016/0167-6636(88)90007-5
    [119]
    NEMAT-NASSER S, CHANG S N. Compression-induced high strain rate void collapse, tensile cracking, and recrystallization in ductile single and polycrystals [J]. Mechanics of Materials, 1990, 10(1/2): 1–17. doi: 10.1016/0167-6636(90)90013-6
    [120]
    ANDRADE U, MEYERS M A, VECCHIO K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper [J]. Acta Metallurgica et Materialia, 1994, 42(9): 3183–3195. doi: 10.1016/0956-7151(94)90417-0
    [121]
    MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
    [122]
    XU Y B, ZHONG W L, CHEN Y J, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy [J]. Materials Science and Engineering: A, 2001, 299(1/2): 287–295. doi: 10.1016/S0921-5093(00)01412-X
    [123]
    HWANG B, LEE S, KIM Y C, et al. Microstructural development of adiabatic shear bands in ultra-fine-grained low-carbon steels fabricated by equal channel angular pressing [J]. Materials Science and Engineering: A, 2006, 441(1/2): 308–320. doi: 10.1016/j.msea.2006.08.045
    [124]
    LIU S L, PAN Z L, ZHAO Y H, et al. Effect of strain rate on the mechanical properties of a gum metal with various microstructures [J]. Acta Materialia, 2017, 132: 193–208. doi: 10.1016/j.actamat.2017.04.052
    [125]
    LIU S L, GUO Y Z, PAN Z L, et al. Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal [J]. Journal of Materials Science & Technology, 2020, 54: 31–39. doi: 10.1016/j.jmst.2020.03.042
    [126]
    RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. doi: 10.1103/PhysRevLett.101.165501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views(4238) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return