Volume 35 Issue 5
Sep 2021
Turn off MathJax
Article Contents
XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720
Citation: XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720

Response Mechanism of Fuse with Different Structures under Thermal Stimulation

doi: 10.11858/gywlxb.20210720
  • Received Date: 04 Feb 2021
  • Rev Recd Date: 06 Mar 2021
  • To study the response characteristics of the fuse with venting structure, the self-designed fuse venting device is used to study the effect of venting device on the reaction violence of the fuse under cook-off. The results show that under slow cook-off, the reaction violence of fuse is deflagration without venting structure, and the fuse structure is destroyed. The reaction violence with the venting structure is combustion. Under fast cook-off, the reaction violence fuse is deflagration when there is no venting structure, the bottom end cover of the fuse is damaged, and the reaction violence is burning with the venting structure. The temperature inside the explosive is obtained through numerical simulation. The ignition point of slow cook-off is located at the center of the booster, and the ignition point of fast cook-off is at the bottom of the booster. Different ignition positions make the pressure release process of the booster different. Slow cook-off uses the pressure of the center ignition to form an exhaust channel from the center to the venting structure to release the internal pressure. In the fast cook-off test, after the venting structure releases part of the pressure, the remaining pressure causes the bottom end cover to burst.

     

  • loading
  • [1]
    KELLEY S, CENTER A A, DIRECTORATE A. Venting techniques for penetrator warheads [C]//Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany, 2010.
    [2]
    MADSEN T, DEFISHER S, BAKER E L, et al. Explosive venting technology for cook-off response mitigation: ARMET-TR-10003 [R]. Picatinny Arsenal, NJ: Munitions Engineering Technology Center, 2010.
    [3]
    陈科全, 黄亨建, 路中华, 等. 一种弹体排气缓释结构设计方法与试验研究 [J]. 弹箭与制导学报, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004

    CHEN K Q, HUANG H J, LU Z H, et al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004
    [4]
    沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273

    SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273
    [5]
    GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium. Munich, Germany, 2010.
    [6]
    KINNEY G F, SEWELL R G S. Venting of explosions: NWC TM 2448 [R]. China Lake: Naval Weapons Center, 1974.
    [7]
    SINDITSKII V P, LEVSHENKOV A I, EGORSHEV V Y, et al. Study on combustion and thermal decomposition of 1, 1-diamino-2, 2-dinitroethylene (FOX-7) [C]//Proceedings of the International Pyrotechnics Seminar. California, 2006.
    [8]
    胡荣祖, 赵凤起, 高红旭, 等. 用C-H-N-O炸药的Mρ、ΔfHC pTigorb和爆轰产物的ΔfH估算炸药的爆轰性能 [J]. 火炸药学报, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005

    HU R Z, ZHAO F Q, GAO H X, et al. Estimation of detonation performances of explosives using M, ρ, ΔfH, C p, Tigorb of C-H-O-N explosives and ΔfH of detonation products [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005
    [9]
    薛超阳, 智小琦, 王帅, 等. 某引信及其等效构件的慢速烤燃研究 [J]. 兵工学报, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008

    XUE C Y, ZHI X Q, WANG S, et al. Study of cook-off of a fuze and its equivalent components [J]. Acta Armamentarii, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008
    [10]
    BOBELEV V K, MARGOLIN A D, CHUIKO S V. The mechanism by which combustion products penetrate into the pores of a charge explosive material [J]. Proceeding of the National Academy of Sciences, 1965.
    [11]
    杨世铭. 传热学[M]. 2版. 北京: 高等教育出版社, 1987: 330−333.

    YANG S M. Heat transfer [M]. 2nd ed. Beijing: Higher Education Press, 1987: 330−333.
    [12]
    吴松, 李明海, 张中礼. 火灾环境下含炸药结构传热问题的数值模拟 [J]. 含能材料, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008

    WU S, LI M H, ZHANG Z L. Numerical simulation of heat transfer problems in structure with explosive under fire [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008
    [13]
    CONOLLY R, DAVIES R M. A study of convective heat transfer from flames [J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2155–2172. doi: 10.1016/0017-9310(72)90039-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(1902) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return