Citation: | XU Rui, ZHI Xiaoqi, YU Yongli, GAO Feng. Response Mechanism of Fuse with Different Structures under Thermal Stimulation[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055101. doi: 10.11858/gywlxb.20210720 |
[1] |
KELLEY S, CENTER A A, DIRECTORATE A. Venting techniques for penetrator warheads [C]//Insensitive Munitions & Energetic Materials Technology Symposium. Munich, Germany, 2010.
|
[2] |
MADSEN T, DEFISHER S, BAKER E L, et al. Explosive venting technology for cook-off response mitigation: ARMET-TR-10003 [R]. Picatinny Arsenal, NJ: Munitions Engineering Technology Center, 2010.
|
[3] |
陈科全, 黄亨建, 路中华, 等. 一种弹体排气缓释结构设计方法与试验研究 [J]. 弹箭与制导学报, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004
CHEN K Q, HUANG H J, LU Z H, et al. Structural design and experimental study on venting of projectile body [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 15–18. doi: 10.15892/j.cnki.djzdxb.2015.04.004
|
[4] |
沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273
SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. doi: 10.11943/CJEM2018273
|
[5] |
GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium. Munich, Germany, 2010.
|
[6] |
KINNEY G F, SEWELL R G S. Venting of explosions: NWC TM 2448 [R]. China Lake: Naval Weapons Center, 1974.
|
[7] |
SINDITSKII V P, LEVSHENKOV A I, EGORSHEV V Y, et al. Study on combustion and thermal decomposition of 1, 1-diamino-2, 2-dinitroethylene (FOX-7) [C]//Proceedings of the International Pyrotechnics Seminar. California, 2006.
|
[8] |
胡荣祖, 赵凤起, 高红旭, 等. 用C-H-N-O炸药的M、ρ、ΔfH mθ、C p、Tigorb和爆轰产物的ΔfH mθ估算炸药的爆轰性能 [J]. 火炸药学报, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005
HU R Z, ZHAO F Q, GAO H X, et al. Estimation of detonation performances of explosives using M, ρ, ΔfHmθ, C p, Tigorb of C-H-O-N explosives and ΔfHmθ of detonation products [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 20–23. doi: 10.3969/j.issn.1007-7812.2013.02.005
|
[9] |
薛超阳, 智小琦, 王帅, 等. 某引信及其等效构件的慢速烤燃研究 [J]. 兵工学报, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008
XUE C Y, ZHI X Q, WANG S, et al. Study of cook-off of a fuze and its equivalent components [J]. Acta Armamentarii, 2019, 40(5): 962–967. doi: 10.3969/j.issn.1000-1093.2019.05.008
|
[10] |
BOBELEV V K, MARGOLIN A D, CHUIKO S V. The mechanism by which combustion products penetrate into the pores of a charge explosive material [J]. Proceeding of the National Academy of Sciences, 1965.
|
[11] |
杨世铭. 传热学[M]. 2版. 北京: 高等教育出版社, 1987: 330−333.
YANG S M. Heat transfer [M]. 2nd ed. Beijing: Higher Education Press, 1987: 330−333.
|
[12] |
吴松, 李明海, 张中礼. 火灾环境下含炸药结构传热问题的数值模拟 [J]. 含能材料, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008
WU S, LI M H, ZHANG Z L. Numerical simulation of heat transfer problems in structure with explosive under fire [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 617–623. doi: 10.3969/j.issn.1006-9941.2014.05.008
|
[13] |
CONOLLY R, DAVIES R M. A study of convective heat transfer from flames [J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2155–2172. doi: 10.1016/0017-9310(72)90039-7
|