Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
DUAN Wenqi, PU Keqiang, FANG Xiong, DANG Wanteng, LONG Shuchang, YAO Xiaohu. Impact Characteristics of Drone Aircraft in Airbag Cushion Landing[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712
Citation: DUAN Wenqi, PU Keqiang, FANG Xiong, DANG Wanteng, LONG Shuchang, YAO Xiaohu. Impact Characteristics of Drone Aircraft in Airbag Cushion Landing[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065301. doi: 10.11858/gywlxb.20210712

Impact Characteristics of Drone Aircraft in Airbag Cushion Landing

doi: 10.11858/gywlxb.20210712
  • Received Date: 22 Jan 2021
  • Rev Recd Date: 21 Feb 2021
  • Aiming at the transient dynamic response of drone aircraft cushion landing with airbag, the explicit dynamic calculation method and pressure equalizing airbag model are adopted to analyze the dynamic response of drone aircraft fuselage and wings under impact during cushion landing with airbag, and the attitude and strength characteristics and airbag parameters in the recovery process of drone aircraft are obtained. The effects of airbag cushion parameters (orifice area, initial internal pressure and exhaust threshold) and drone aircraft state on the fuselage of drone aircraft during landing are discussed. The results show that: under the standard conditions, the aircraft’s attitude and strength meet the requirements of safe landing after buffering with airbag. Through the analysis of different landing parameters, it is found that the area of the airbag exhaust vent has a great impact on the cushioning effect, while the threshold of the airbag exhaust pressure and the initial internal pressure have little impact on it. The same airbag has high adaptability to different initial landing speeds of drone aircraft. The local stress of the later landing fuselage of the drone aircraft with pitch angle is too large. This method can be widely used in the dynamic calculation of aircraft airbag cushion. Combined with the airbag drop test, the corresponding airbag parameters and fuselage structure response data can be obtained, which provides a basis for the design of target aircraft.

     

  • loading
  • [1]
    温金鹏, 李斌, 杨智春. 缓冲气囊冲击减缓研究进展 [J]. 宇航学报, 2010, 31(11): 2438–2447. doi: 10.3873/j.issn.1000-1328.2010.11.002

    WEN J P, LI B, YANG Z C. Progress of study on impact attenuation capability of airbag cushion system [J]. Journal of Astronautics, 2010, 31(11): 2438–2447. doi: 10.3873/j.issn.1000-1328.2010.11.002
    [2]
    戈嗣诚, 施允涛. 无人机回收气囊缓冲特性研究 [J]. 南京航空航天大学学报, 1999, 31(4): 458–463. doi: 10.3969/j.issn.1005-2615.1999.04.016

    GE S C, SHI Y T. Study on cushioning characteristics of air bag for RPV recovery [J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(4): 458–463. doi: 10.3969/j.issn.1005-2615.1999.04.016
    [3]
    邵志建, 裴锦华. 某无人机横向圆柱排气式气囊着陆装置缓冲过程研究 [J]. 航天返回与遥感, 2016, 37(2): 26–33. doi: 10.3969/j.issn.1009-8518.2016.02.004

    SHAO Z J, PEI J H. Simulation of bi-cylindrical airbag cushioning system for pilotless aircraft [J]. Spacecraft Recovery & Remote Sensing, 2016, 37(2): 26–33. doi: 10.3969/j.issn.1009-8518.2016.02.004
    [4]
    NEFSKE D J. A basic airbag model [C]//National Automobile Engineering Meeting.1972.
    [5]
    WANG J T, NEFSKE D J. A new CAL3D airbag inflation model [C]//SAE International Congress and Exposition, 1988.
    [6]
    张红英, 杨璐瑜, 李姝磊. 空降空投中的气囊缓冲包装技术 [J]. 包装工程, 2016, 37(17): 20–24. doi: 10.19554/j.cnki.1001-3563.2016.17.006

    ZHANG H Y, YANG L Y, LI S L. Airbag cushion packaging technology in airborne airdrop [J]. Packaging Engineering, 2016, 37(17): 20–24. doi: 10.19554/j.cnki.1001-3563.2016.17.006
    [7]
    周强, 谭百贺. 可控排气式气囊着陆缓冲特性研究 [J]. 应用力学学报, 2019, 36(3): 687–690. doi: 10.11776/cjam.36.03.D039

    ZHOU Q, TAN B H. Study on landing buffer characters of a controllable vent airbag [J]. Chinese Journal of Applied Mechanics, 2019, 36(3): 687–690. doi: 10.11776/cjam.36.03.D039
    [8]
    MARKLUND P O, NILSSON L. Simulation of airbag inflation processes using a coupled fluid structure approach [J]. Computational Mechanics, 2002, 29(4/5): 289–297. doi: 10.1007/S00466-002-0341-Z
    [9]
    周默涵, 狄长春, 杨玉良, 等. 圆柱筒式空投气囊缓冲模拟 [J]. 包装工程, 2017, 38(17): 128–132. doi: 10.19554/j.cnki.1001-3563.2017.17.027

    ZHOU M H, DI C C, YANG Y L, et al. Simulation of cushion characteristic of cylindrical airdrop airbag [J]. Packaging Engineering, 2017, 38(17): 128–132. doi: 10.19554/j.cnki.1001-3563.2017.17.027
    [10]
    [11]
    冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法 [J]. 高压物理学报, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687

    FENG X W, LU Y G, LI Y Z. Damage assessment method of aircraft targets under blast wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045101. doi: 10.11858/gywlxb.20180687
    [12]
    周旋, 周仕明, 李道奎. 着陆缓冲气囊的无反弹设计方法研究 [J]. 载人航天, 2020, 26(2): 190–199. doi: 10.3969/j.issn.1674-5825.2020.02.009

    ZHOU X, ZHOU S M, LI D K. Research on design methods of landing impact attenuating airbag without rebound [J]. Manned Spaceflight, 2020, 26(2): 190–199. doi: 10.3969/j.issn.1674-5825.2020.02.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views(789) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return