Volume 35 Issue 5
Sep 2021
Turn off MathJax
Article Contents
YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710
Citation: YU Pengshan, LIU Zhifang, LI Shiqiang. Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054205. doi: 10.11858/gywlxb.20210710

Design and Energy Absorption Characteristic Analysis of a New Bio-Bamboo Thin-Walled Circular Tube

doi: 10.11858/gywlxb.20210710
  • Received Date: 19 Jan 2021
  • Rev Recd Date: 04 Feb 2021
  • Inspired by the microstructure of natural bamboo, a new bio-bamboo thin-walled tube was designed by introducing double-rhombic ribs between inner and outer tubes on the basis of the traditional double-circular tube structure. Based on the theory of simplified super folding element, theoretical models of bio-bamboo circular tubes under axial compression were established. Finite element software ABAQUS was used to simulate the axial compression of these models. For crashworthiness and deformation mode of bio-bamboo thin-walled tube, the effects of those number of double-rhombic ribs, diameter of inner tube, wall thickness were analyzed, and it was compared with the traditional structure. The results show that the theoretical prediction is consistent with numerical simulation, and the errors of average compression force and specific energy absorption are less than 10%. Compared with traditional double-circular tube, the specific energy absorption of the bio-bamboo thin-walled tube is increased by 83.61% and the compression force efficiency is increased by 198.65%. The number of ribs has a significant effect on the crashworthiness of the structure. With the number increase of double-rhombic ribs, both specific structural energy absorption and peak crushing force increases. When the number of ribs is small, the structure appears local buckling deformation, which affects the energy absorption crashworthiness. The smaller the diameter of inner tube, the higher the initial peak force, and the larger the diameter of inner tube, the smaller the energy absorption.

     

  • loading
  • [1]
    SUN X J, ZHANG H, MENG W J, et al. Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers [J]. Nonlinear Dynamics, 2018, 94: 1243–1265. doi: 10.1007/s11071-018-4421-9
    [2]
    XIE S C, WANG N, YANG W L, et al. Energy absorption performance of thin-walled metal plate due to upheaval deformation based on experiments and numerical simulation [J]. Thin-Walled Structures, 2018, 131: 258–273. doi: 10.1016/j.tws.2018.07.006
    [3]
    XU X, ZHANG Y, CHENG X, et al. Crushing behaviors of hierarchical sandwich-walled columns [J]. International Journal of Mechanical Sciences, 2019, 161/162: 105021. doi: 10.1016/j.ijmecsci.2019.105021
    [4]
    VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin Walled Structures, 2017, 112: 184–193. doi: 10.1016/j.tws.2016.12.008
    [5]
    吴伟, 张辉, 曹美文, 等. 仿生BCC结构的准静态压缩数值模拟及吸能性 [J]. 高压物理学报, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578

    WU W, ZHANG H, CAO M W, et al. Numerical simulation of quasi-static compression and snergy absorption of bionic BCC structure [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
    [6]
    ESTRADA Q, SZWEDOWICZ D, RODRIGUEZ-MENDEZ A, et al. Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bi-tubular profiles [J]. Thin Walled Structures, 2019, 140: 43–59. doi: 10.1016/j.tws.2019.02.039
    [7]
    FAN Z, LU G, LIU K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes [J]. Engineering Structures, 2013, 55(4): 80–89.
    [8]
    姚如洋, 赵振宇, 尹冠生, 等. 薄壁开孔圆管在轴向荷载作用下的理论研究 [J]. 振动与冲击, 2020, 39(2): 141–147.

    YAO R Y, ZHAO Z Y, YIN G S, et al. Theoretical study on thin-walled perforated circular tube under axial load [J]. Journal of Vibration and Shock, 2020, 39(2): 141–147.
    [9]
    SONG J, XU S, XU L, et al. Experimental study on the crashworthiness of bio-inspired aluminum foam-filled tubes under axial compression loading [J]. Thin-Walled Structures, 2020, 155: 106937. doi: 10.1016/j.tws.2020.106937
    [10]
    杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 59–69.

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes with simulated shrimps [J]. Explosion and Shock Waves, 2020, 40(4): 59–69.
    [11]
    闫栋, 王根伟, 宋辉, 等. 类向日葵夹芯圆柱壳径向冲击数值模拟 [J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

    YAN D, WANG G W, SONG H, et al. Numerical simulation of radial impact on sunflower-like sandwich cylindrical shell [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
    [12]
    FU J, LIU Q, LIU F K, et al. Design of bionic-bamboo thin-walled structures for energy absorption [J]. Thin-Walled Structures, 2019, 135: 400–413. doi: 10.1016/j.tws.2018.10.003
    [13]
    CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115(5): 48–57.
    [14]
    CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin Walled Structures, 2001, 39(4): 287–306. doi: 10.1016/S0263-8231(01)00006-4
    [15]
    WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [16]
    TRAN T N, HOU S J, HAN X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes [J]. Thin-Walled Structures, 2014, 82: 183–195.
    [17]
    TRAN T N, HOU S J, HAN X, et al. Crushing analysis and numerical optimization of angle element structures under axial impact loading [J]. Composite Structures, 2015, 119: 422–435. doi: 10.1016/j.compstruct.2014.09.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(2095) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return