Volume 35 Issue 5
Sep 2021
Turn off MathJax
Article Contents
ZHANG Hongxue, LIU Weiqun, LI Pan. Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709
Citation: ZHANG Hongxue, LIU Weiqun, LI Pan. Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055301. doi: 10.11858/gywlxb.20210709

Permeability Model of Coal Measure Gas Reservoirs Considering Dynamic Diffusion

doi: 10.11858/gywlxb.20210709
  • Received Date: 15 Jan 2021
  • Rev Recd Date: 24 Mar 2021
  • In order to predict evolution of permeability for reservoir in the process of coal measure gas exploitation, based on the stress-strain constitutive of reservoir and the cubical relation of permeability and porosity, the model of the effective stress-permeability of reservoir was presented, which considers the kinetic diffusion of gases in the matrix. The analytical models of reservoir under constant volume and uniaxial strain conditions were established respectively. Furthermore, the effectiveness of the two models are investigated using permeability data from field and laboratory tests respectively. The results show that, compared with the model under constant volume condition and C-M model, the permeability model under uniaxial strain condition can better fit the permeability data from the field and laboratory. It is very important to take the dynamic diffusion of gas in the matrix into consideration during establishing the permeability model. Besides, the effect of model parameters on permeability was studied. It is shown that the model parameters have a significant influence on the permeability evolution and rebound pressure.

     

  • loading
  • [1]
    秦勇. 中国煤系气共生成藏作用研究进展 [J]. 天然气工业, 2018, 38(4): 26–36.

    QIN Y. Research progress of symbiotic accumulation of coal measure gas in China [J]. Natural Gas Industry, 2018, 38(4): 26–36.
    [2]
    李勇, 王延斌, 孟尚志, 等. 煤系非常规天然气合采地质基础理论进展及展望 [J]. 煤炭学报, 2020, 45(4): 1406–1418.

    LI Y, WANG Y B, MENG S Z, et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production [J]. Journal of China Coal Society, 2020, 45(4): 1406–1418.
    [3]
    曹毅民, 丁蓉, 赵启阳, 等. 煤层气可采储量计算方法的评价与应用 [J]. 天然气工业, 2020, 38(Suppl 1): 50–56.

    CAO Y M, DING R, ZHAO Q Y, et al. Evaluation and application of the calculation method of recoverable reserves of coalbed methane [J]. Natural Gas Industry, 2020, 38(Suppl 1): 50–56.
    [4]
    张宏学, 刘卫群. 海陆过度相煤系页岩气的渗流特征 [J]. 高压物理学报, 2018, 32(5): 055901.

    ZHANG H X, LIU W Q. Seepage of marine-terrigenous facies coal measures shale [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901.
    [5]
    王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键实验技术的进展与展望 [J]. 天然气工业, 2020, 40(6): 1–17.

    WANG H Y, ZHOU S W, LIU D X, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation [J]. Natural Gas Industry, 2020, 40(6): 1–17.
    [6]
    PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model [J]. SPE Reservoir Evaluation and Engineering, 1998, 1(6): 539–544. doi: 10.2118/52607-PA
    [7]
    SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery [J]. Transport in Porous Media, 2004, 56(1): 1–16. doi: 10.1023/B:TIPM.0000018398.19928.5a
    [8]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [9]
    张宏学, 刘卫群, 朱立. 页岩储层裂隙渗透率模型和试验研究 [J]. 岩土力学, 2015, 36(3): 719–729.

    ZHANG H X, LIU W Q, ZHU L. Fracture permeability model and experiments of shale gas reservoirs [J]. Rock and Soil Mechanics, 2015, 36(3): 719–729.
    [10]
    WU Y, LIU J S, ELSWORTH D, et al. Development of anisotropic permeability during coalbed methane production [J]. Journal of Natural Gas Science and Engineering, 2010, 2(4): 197–210. doi: 10.1016/j.jngse.2010.06.002
    [11]
    LIU T, LIN B Q, YANG W, et al. Coal permeability evolution and gas migration non-equilibrium state [J]. Transport in Porous Media, 2017, 118(3): 393–416. doi: 10.1007/s11242-017-0862-8
    [12]
    WEI Z J, ZHANG D X. Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1242–1253. doi: 10.1016/j.ijrmms.2010.08.020
    [13]
    SANG G J, ELSWORTH D, MIAO X X, et al. Numerical study of a stress dependent triple porosity model for shale gas reservoirs accommodating gas diffusion in kerogen [J]. Journal of Natural Gas Science and Engineering, 2016, 32: 423–438. doi: 10.1016/j.jngse.2016.04.044
    [14]
    WANG G, WANG K, WANG S G, et al. An improved permeability evolution model and its application in fractured sorbing media [J]. Journal of Natural Gas Science and Engineering, 2018, 56: 222–232. doi: 10.1016/j.jngse.2018.05.038
    [15]
    SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery [J]. SPE Reservoir Evaluation and Engineering, 2005, 8(4): 291–299. doi: 10.2118/87230-PA
    [16]
    MITRA A, HARPALANI S, LIU S M. Laboratory measurement and modeling of coal permeability with continued methane production: Part 1-laboratory results [J]. Fuel, 2012, 94(4): 110–116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(1972) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return