MEN Jianbing, LU Yihao, JIANG Jianwei, FU Heng, HAN Wei. Johnson-Cook Failure Model Parameters of Tantalum-Tungsten Alloy for Rod-Shaped EFP[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. doi: 10.11858/gywlxb.20200550
Citation: XIAO Xiangdong, XIAO Youcai, JIANG Haiyan, FAN Chenyang, WANG Zhijun. Numerical Simulation and Analysis of Fuze Explosive Trains under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054202. doi: 10.11858/gywlxb.20210706

Numerical Simulation and Analysis of Fuze Explosive Trains under Shock Waves

doi: 10.11858/gywlxb.20210706
  • Received Date: 10 Jan 2021
  • Rev Recd Date: 02 Feb 2021
  • In order to resolve the problem of martyred detonation of insensitive munitions or fuzes during combat readiness and logistical storage, numerical simulation of detonation sequence of the fuze under shock wave was carried out by using nonlinear finite element method. The growth course, propagation law and critical detonation distance of the fuze explosive train were obtained. And the criterion of shock wave energy was established and the condition of sympathetic detonation was given. The results showed that the detonation wave propagates from the top left to the bottom right and explodes at the bottom right, and the critical sympathetic detonation distance of the fuze explosive train is 9.7 mm. When the shock wave energy was greater than the critical detonation energy, the sympathetic detonation occurs in the fuze explosive train.

     

  • 爆炸成型弹丸(Explosive formed projectile, EFP)是一种利用装药聚能效应形成的高速弹丸,在智能灵巧反装甲弹药中具有广泛应用[1-2]。钽及其合金因具有高密度、高延展性等特点成为主选罩材之一,研究者不断探索通过提高EFP的长径比来提高侵彻威力。随着数值仿真技术的飞速发展,这种使用方便、直观高效的方法逐渐成为当下EFP研究的主要手段。数值仿真的准确性主要依赖于计算方法、材料模型及其参数等因素。目前关于EFP成型的数值模拟主要采用Lagrange、ALE和Lagrange/Euler混合等计算方法,而药型罩一般采用Lagrange网格表征,对于其大变形引起的计算步长过小问题则采用无物理意义的侵蚀算法处理,即当微元几何应变超过某定值,将该变形网格从计算中删除。药型罩材料本构模型一般采用考虑材料应变率的Johnson-Cook(JC)、Zerilli-Armstrong等模型,通常未考虑使用材料的失效模型。如Kim等[3]、郭腾飞等[4]、樊雪飞等[5]和朱志鹏等[6]分别采用未加失效的本构模型研究了聚能装药结构参数对钽EFP成型的影响。上述方法对球形或小长径比EFP成型形态预测得较为可信,但对于寻求进一步提高其侵彻能力的大长径比杆式EFP则显得无能为力,存在误判EFP断裂而得出错误成型形态的情况,这已成为制约大长径比EFP数值模拟预测的瓶颈。针对这一问题,已有相关学者针对成熟罩材展开研究,如丁力等[7]引入JC失效模型预测了紫铜罩杆式EFP的成型,而对于钽及其合金EFP的这类问题研究较少。

    近年来不少学者也开展了钽及其合金的材料表征,研究主要集中在材料的本构关系[8-12],对材料断裂失效表征研究却鲜有报道。在钽及其合金的JC模型研究方面,彭建祥[8]、郭伟国[9]、Gao等[11]进行了相关力学性能试验,根据试验结果拟合了材料JC本构模型,但并未对材料的JC失效模型进行研究。

    为了实现采用数值模拟方法精准预测钽EFP的成型,指导EFP装药结构设计,针对一种典型钽钨合金材料,开展不同应力、温度和应变率下的力学性能测试,根据试验测试数据拟合得到JC失效模型参数;通过对比典型球缺钽钨药型罩EFP成型的数值模拟结果与拍摄的脉冲X射线摄影照片,验证数值模拟的有效性。研究结果可为钽钨EFP战斗部的设计提供技术支撑。

    材料的失效是受到多种因素影响的复杂物理现象。针对金属材料在较大压力、应变率和温度条件下的失效,Johnson等[13]提出了考虑应力三轴度、温度及应变率效应的JC失效模型。模型采用累积损伤准则,定义损伤参数

    D=Δεeqεf
    (1)

    式中:Δεeq为一个计算循环的等效塑性应变增量,εf为当前计算循环的应力、应变率和温度下材料的失效应变。当损伤参数D=1时,材料失效。失效应变的表达形式如下

    εf=[D1+D2exp(D3σ)](1+D4ln˙εeq)(1+D5T)
    (2)

    式中:D1D2D3D4D5为材料参数;σ为应力三轴度;˙εeq为无量纲等效应变率,˙εeq=˙εeq/˙ε0˙εeq为实际应变率,˙ε0为参考应变率;T为无量纲温度,T=(TTr)/(TmTr)T为瞬时温度,Tr为参考温度,Tm为材料熔化温度。

    式(2)等号右边的3个部分分别对应应力、应变率和温度对失效应变的影响。三者为乘积关系,相互独立,依次单独变化某一因素,即可拟合出相应材料参数。

    钽及其合金材料因其高密度和优异的力学性能,在聚能装药药型罩中具有应用潜能。本研究选用钽钨合金,密度为16.65 g/cm3,采用电子束熔炼及锻造挤压加工工艺。表1显示了钽钨合金主要化学成分(质量分数)。实验试件均加工自同一批次钽钨合金棒材。为了标定钽钨合金的JC失效模型,开展了3个系列的材料力学性能实验:缺口试件拉伸实验、光滑试件室温拉伸实验和高温拉伸实验。

    表  1  钽钨合金化学成分
    Table  1.  Chemical composition of tantalum tungsten alloy (%)
    NbWMoNOSi
    0.006 62.830 00.001 00.001 50.007 10.001 0
    下载: 导出CSV 
    | 显示表格
    1.2.1   应力三轴度对失效应变的影响

    通过对不同缺口试件的单向拉伸实验来获取不同应力三轴度下钽钨合金的失效应变。缺口试件尺寸如图1所示。根据Bridgman[14]的分析,可近似取缺口拉伸试件的应力三轴度

    图  1  缺口试件尺寸(单位:mm)
    Figure  1.  Size of the notched specimen (Unit:mm)
    σ=13+ln(1+a2R)
    (3)

    式中:a为试件缺口处横截面的半径,R为缺口曲率半径。

    为了获取较宽的应力三轴度范围,加工了4种缺口试件,缺口半径R分别为1.0、1.5、3.0和6.0 mm,同时也加工了不含缺口的光滑圆柱试件,其R可视为无穷大。

    钽钨合金EFP成型过程中的断裂主要是由拉伸导致,因此在进行应力三轴度对失效应变影响的材料实验时,未考虑压缩断裂的情况。

    在常温下,使用INSTRON万能材料实验机对各试件进行参考应变率下的单向拉伸实验。该实验以及随后的拉伸实验结果中断裂试件的失效应变εf采用下式计算[15]

    εf=ln(A0/Af)
    (4)

    式中:A0为试件初始横截面积,Af为断裂后断口区域横截面积。图2为试件拉伸实验前后照片。

    图  2  拉伸实验前后不同缺口试件照片
    Figure  2.  Notched specimens before and after tensile tests

    缺口试件拉伸实验中,失效应变随应力三轴度的变化如图3所示。从图3可以看出,钽钨合金的失效应变随应力三轴度的增加而减小。在参考应变率和室温条件下,JC失效模型可简化为εf=D1+D2exp(D3σ)。采用非线性最小二乘法,通过JC失效模型对图3中的数据进行拟合,得到失效参数D1=1.355,D2=1.833,D3= −1.930,拟合曲线与测试数据点对比见图3

    图  3  失效应变与应力三轴度的关系
    Figure  3.  Relationship between fracture strain and stress triaxiality
    1.2.2   应变率对失效应变的影响

    采用光滑圆柱试件,在室温下使用材料拉伸实验机进行不同拉伸速率的单向拉伸实验,获得钽钨合金材料在应变率为10−4~10−1 s−1范围内的失效应变,图4为圆柱试件夹持状态。拉伸实验机的拉伸速率通过引伸计进行控制。光滑圆柱试件尺寸见图5,试件拉伸实验前后照片见图6

    图  4  圆柱试件加持状态照片
    Figure  4.  Clamped cylindrical specimen
    图  5  光滑圆柱试件尺寸(单位:mm)
    Figure  5.  Smooth cylindrical specimen (Unit:mm)
    图  6  不同应变率拉伸实验前后光滑圆柱试件照片
    Figure  6.  Smooth cylindrical specimens before and after tensile tests at different strain rates

    ˙ε0=10−3 s−1作为参考应变率,失效应变随无量纲应变率的对数的变化如图7所示。在室温条件下,JC失效模型简化为εf=K(1+D4ln˙εeq),其中K可由已知的D1D2D3以及光滑圆柱试件的σ求得。通过JC失效模型公式对图中数据进行拟合,得到失效参数D4=0.015。

    图  7  失效应变与应变率的关系
    Figure  7.  Relationship between fracture strain and the logarithmic non-dimensional strain rate
    1.2.3   温度对失效应变的影响

    在参考应变率下进行不同温度下光滑圆柱试件单向拉伸实验,可以获得温度影响常数D5,实验选取的温度为室温、300 ℃、500 ℃。采用电加热方式,并使用热电偶进行测温。实验中试件升温至规定温度并稳定15 min后进行拉伸。拉伸实验前后试件照片如图8所示。

    图  8  不同温度下拉伸实验前后光滑圆柱试件照片
    Figure  8.  Smooth cylindrical specimens before and after tensile tests at different temperatures

    图9给出了试件的失效应变随温度的变化。随着温度上升,钽钨合金的延性提高,失效应变增大。在该实验条件下,JC失效模型的形式可简化为εf=K(1+D5T)。通过简化的JC失效模型对图9中的数据进行拟合,得到失效参数D5=1.868。

    图  9  失效应变与温度的关系
    Figure  9.  Relationship between fracture strain and temperature

    基于实验测得的钽钨合金的JC失效模型参数,能否实现对钽钨合金EFP成型及断裂的有效预测,需要进行数值模拟和对比实验的验证。

    为验证钽钨合金JC失效模型参数模拟EFP成型的有效性,针对性地设计了两种预期能形成不同长径比的杆式EFP聚能装药结构,两种结构的唯一差异在于药型罩的厚度。图10为EFP装药结构的几何简化模型。装药类型为JH-2炸药,装药直径D=56 mm,装药长度L=48.5 mm;壳体材料为45钢,壁厚h=5 mm;药型罩材料为钽钨合金,采用球缺变壁厚结构,外壁曲率Ro=58.55 mm,内壁曲率Ri=57.70 mm,两种结构的药型罩中心厚度δ分别取1.5和2.0 mm。

    图  10  EFP 装药结构的几何模型
    Figure  10.  Geometric model of EFP charge structure

    采用LS-DYNA非线性动力学软件Lagrange 算法对两种结构的EFP成型过程进行数值模拟。图11为计算网格模型,各部件均使用二维14号Shell单元进行划分。按照是否嵌入失效模型分两组开展数值模拟,按序记为组Ⅰ、组Ⅱ。组Ⅰ中钽钨合金材料不应用失效模型,组Ⅱ中引入本研究测得的JC失效模型。各部件选用的材料模型参数如表2所示,其中ρ为密度,45钢、JH-2的材料模型参数引自文献[6]。钽钨合金的JC本构模型参数(ABnCm)引自文献[16],如表3所示。

    表  2  数值模拟中采用的材料模型参数
    Table  2.  Material models used in the numerical simulation
    ComponentMaterialρ/(g∙cm−3)Equation of stateConstitutive relationFailure model
    LinerTa-W16.65GrüneisenJohnson-CookNone (Ⅰ)
    Johnson-Cook (Ⅱ)
    Shell45 steel7.83GrüneisenJohnson-CookNone
    ChargeJH-21.71JWLHigh-Explosive-BurnNone
    下载: 导出CSV 
    | 显示表格
    表  3  钽钨合金的Johnson-Cook本构模型参数[16]
    Table  3.  Material parameters of Johnson-Cook constitutive model for Ta-W[16]
    A/MPaB/MPanCm
    2113810.750.0680.38
    下载: 导出CSV 
    | 显示表格
    图  11  EFP成型数值计算网格模型
    Figure  11.  Simulation model of EFP

    采用与数值模拟计算一致的聚能装药结构以及材料,开展了EFP战斗部静爆脉冲X射线实验,图12图13分别显示了EFP实验中的战斗部部件以及脉冲X射线摄影实验现场布置。

    图  12  EFP实验战斗部部件
    Figure  12.  Components of EFP warhead
    图  13  脉冲X射线摄影实验现场布置
    Figure  13.  Scene of pulsed X-ray imaging experiment

    表4为不同药型罩壁厚条件下EFP的成型仿真计算结果与脉冲X射线实验拍摄到的EFP形态对比。当药形罩壁厚δ=2.0 mm时,选取EFP的成型时刻为300 μs;当药形罩壁厚δ=1.5 mm时,选取EFP的成型时刻为270 μs。

    表  4  数值模拟与实验得到的EFP成型形态对比
    Table  4.  Comparisons of EFP forming states in numerical simulation and experiment
    δ/mmSimulation Ⅰ
    (Without failure model)
    Simulation Ⅱ
    (With failure model)
    X-ray imaging
    experiment
    Forming time/
    μs
    2.0300
    1.5270
    下载: 导出CSV 
    | 显示表格

    当药型罩壁厚δ=2.0 mm时,X射线成像图中药型罩形成了形态完整、具有一定长径比的EFP。对于该EFP的数值模拟,组Ⅰ、组Ⅱ的计算结果一致,JC失效模型的嵌入对计算结果并无明显影响,且二者的计算结果与实验较为吻合,各项成型参数的相对误差均小于5%,数值模拟与实验得到的EFP成型参数如表5所示。

    表  5  数值模拟与实验得到的EFP成型参数对比
    Table  5.  Comparisons of EFP forming results in numerical simulation and experiment
    δ/mmMethodVelocity/(m·s–1)Length/mmDiameter/mm
    2.0Simulation Ⅰ171841.611.4
    Simulation Ⅱ171841.611.4
    Experiment177041.310.8
    1.5Simulation Ⅰ196851.58.9
    Simulation Ⅱ202136.1+14.710.4
    Experiment212033.2+15.610.1
    下载: 导出CSV 
    | 显示表格

    当药型罩壁厚δ=1.5 mm时,X射线成像图中药型罩形成的EFP总长径比因壁厚减小而有所增大,但是在尾部发生了断裂。对于该EFP的数值模拟,组Ⅰ未能模拟出EFP的断裂,而是得到了具有较高长径比的完整EFP,与实验结果并不相符,若以此为依据指导EFP战斗部设计则会造成误判;组Ⅱ则较为准确地预测了EFP的断裂,得到的EFP成型形态与实验结果较为吻合,各项成型参数的相对误差均小于9%。

    可以认为,相较于无失效模型的组Ⅰ,嵌入本研究测得的JC失效模型的组Ⅱ较为准确地预测了不同长径比钽钨合金杆式EFP的成型和断裂。

    (1)针对典型钽钨合金材料开展了不同缺口尺寸试件在不同应力、应变率和温度影响下的力学性能实验,测得了失效应变,并根据实验测试数据拟合得到了该钽钨合金的JC失效模型参数。

    (2)设计了两种壁厚钽钨合金球缺形药型罩的聚能装药结构,开展了带JC失效模型与不带JC失效模型的EFP成型数值模拟及静爆脉冲X射线对比实验。对于较小长径比的EFP模拟,JC失效模型的嵌入对计算结果并无明显影响。当EFP的长径比增大到一定程度发生颈缩或断裂时,就会凸显失效模型的作用。JC失效模型在数值模拟中的嵌入应用,可以有效解决现有数值模拟无法精确表征长杆EFP的断裂问题。

  • [1]
    WANG F J, CHEN H M, MA C, et al. Construction of backscattering echo caused by cloud in laser fuze [J]. Optik, 2018, 171: 153–160. doi: 10.1016/j.ijleo.2018.06.028
    [2]
    SHARP A, ANDRADE J, RUFFINI N. Design for reliability for the high reliability fuze [J]. Reliability Engineering & System Safety, 2018, 181: 54–61.
    [3]
    韩炎晖, 娄文忠, 冯跃, 等. 慢速烤燃环境下引信热响应特性测试与仿真 [J]. 兵工学报, 2019, 40(5): 946–953.

    HAN Y H, LUO W Z, YUE F, et al. Measurement and simulation of thermal response characteristics of fuze in slow cook-off test [J]. Acta Armamentarii, 2019, 40(5): 946–953.
    [4]
    KIM B, PARK J, LEE K C, et al. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine [J]. Journal of Applied Physics, 2014, 116(2): 023512. doi: 10.1063/1.4887811
    [5]
    KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491–5502. doi: 10.1007/s12206-016-1117-2
    [6]
    MOSTAFA H E, MEKKY W F, EL-DAKHAKHNI W W. Sympathetic detonation wave attenuation using polyurethane foam [J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014046. doi: 10.1061/(ASCE)MT.1943-5533.0000934
    [7]
    陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500, 524.

    CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500, 524.
    [8]
    CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive [J]. Defence Technology, 2013, 9(4): 224–228. doi: 10.1016/j.dt.2013.12.002
    [9]
    刘鹏飞. 破片特性对冲击起爆B炸药比动能阈值的影响[D]. 太原: 中北大学, 2017.

    LIU P F. Influence of fragment characteristics on the threshold specific kinetic energy of impacting on covered Comp B [D]. Taiyuan: North University of China, 2017.
    [10]
    SCHWER L E. Impact and detonation of COMP-B: an example using the LS-DYNA EOS: ignition and growth of reaction in high explosives [C]//12th International LS-DYNA User Conference. Detroit, USA: 2012.
    [11]
    李硕, 袁俊明, 刘玉存, 等. 聚黑-14C 的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68, 79.

    LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosive & Propellants, 2016, 39(6): 63–68, 79.
    [12]
    BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449–1458. doi: 10.1016/j.ijimpeng.2008.07.057
    [13]
    时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamics based on ANSYS/LS-DYNA8.1 force analysis [M]. Beijing: Tsinghua University Press, 2009.
    [14]
    袁俊明, 李硕, 刘玉存, 等. 聚奥-9C装药的传爆管殉爆 [J]. 爆炸与冲击, 2018, 38(3): 632–638.

    YUAN J M, LI S, LIU Y C, et al. Sympathetic detonation of booster pipe with JO-9C charge [J]. Explosion and Shock Waves, 2018, 38(3): 632–638.
    [15]
    FOAN G C M, GOLEY G D. Shock initiation in gap test configurations [C]//7th Symposium on Detonation. Annapolis, USA: Naval Surface Weapons Center, 1981.
    [16]
    王泽溥, 郑志良. 爆炸及其防护[M]. 北京: 兵器工业出版社, 2008.

    WANG Z P, ZHENG Z L. Explosion and protection [M]. Beijing: Ordnance Industry Press, 2008.
  • Relative Articles

    [1]LIANG Ce, KAN Qianhua, LIANG Wenjia, MA Guolong, PENG Fang, HONG Shiming, LIU Xiuru. Experimental Investigation of the Glass Transition Temperature in Amorphous Selenium under High Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 051101. doi: 10.11858/gywlxb.20230654
    [2]LIU Jingyi, TAO Yu, FAN Chunmei, WU Binbin, LEI Li. High-Pressure Raman Spectroscopy of hcp Metals[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522
    [3]SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
    [4]JIANG Feng, ZHAO Huifang, XIE Yafei, JIANG Changguo, TAN Dayong, XIAO Wansheng. High Pressure Raman Spectroscopy and X-ray Diffraction of CuS2[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040104. doi: 10.11858/gywlxb.20200509
    [5]YIN Xia, ZHANG Jianbo, DING Yang. Raman Scattering of Spin-Orbit Mott Insulator Sr2IrO4 at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040103. doi: 10.11858/gywlxb.20190865
    [6]HUANG Yanping, CUI Tian. Raman Scattering Investigations of Adamantane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051101. doi: 10.11858/gywlxb.20190832
    [7]HAN Xi, WU Ye, HUANG Haijun. High Pressure Raman Investigation of BiFeO3[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202. doi: 10.11858/gywlxb.20170698
    [8]LI Dong-Fei, ZHANG Ke-Wei, LI Zuo-Wei, LIU Cheng-Zhi, GUO Rui, SUN Cheng-Lin, LI Hai-Bo. High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004
    [9]YUAN Zhen, ZHANG Shao-Peng, JIN Chang-Qing, WANG Xiao-Hui. Raman Spectroscopy Studies of Nanocrystalline Lead Zirconate Titanate as Functions of High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002
    [10]WU Xiao-Xin, LI Min, LI Fang-Fei, ZHOU Qiang, GAO Wei, CUI Qi-Liang, ZOU Guang-Tian. Raman Scattering Studies of n-Octane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 305-309 . doi: 10.11858/gywlxb.2009.04.011
    [11]GAO Ling-Ling, MA Yan-Mei, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, ZOU Guang-Tian, CUI Qi-Liang. Raman Spectra Characterization of Cycloheptane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013
    [12]LU Zhong, ZHAN Xiao-Hong, CAO Da-Hu, ZHANG Liang-Ying, YAO Xi. A High Frequency Hydrostatic Pressure Dielectricity Measuring System Based on Cubic Anvil Apparatus[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 99-102 . doi: 10.11858/gywlxb.2008.01.021
    [13]CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang. The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
    [14]WANG Zhu-Ming, XIE Hong-Sen, GUO Jie, XU Ji-An. Measurement of Grneisen Parameter of Aluminum at High Pressure[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 54-59 . doi: 10.11858/gywlxb.1998.01.009
    [15]MENG Jin-Fang, ZOU Guang-Tian, CUI Qi-Liang, ZHAO Yong-Nian, LI Dong-Mei. A Study of Raman Spectra and the Soft Mode Phase Transition under Hydrostatic Pressure in Ba2-xLaxTi4O11[J]. Chinese Journal of High Pressure Physics, 1992, 6(3): 206-211 . doi: 10.11858/gywlxb.1992.03.007
    [16]LIU Xiao-Yang, SU Wen-Hui, SUN Jia-Yue, PANG Wen-Qin. The Influence of High Pressures on the Luminescence of Ion Exchanged Eu(Ⅲ)NaA and Eu(Ⅲ)NaY Zeolite[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 285-290 . doi: 10.11858/gywlxb.1992.04.007
    [17]ZHAO Yong-Nian, LIU Zhen-Xian, CUI Qi-Liang, XU Yi-Qiu, FAN Yu-Guo, ZOU Guang-Tian. Studies of Raman Spectra for MnF2 at High-Pressures[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 1-6 . doi: 10.11858/gywlxb.1990.01.001
    [18]SU Fang, CHE Rong-Zheng, XU Wei, YAN Fei-Na. Measurement and Analysis of Strain and Calibration of Pressure in Piston-Cylinder Type Apparatus with 4.5 GPa Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 63-71 . doi: 10.11858/gywlxb.1990.01.010
    [19]LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian. The Generation of 90 GPa Quasi-Hydrostatic Pressures and the Measurements of Pressure Distribution[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 284-289 . doi: 10.11858/gywlxb.1989.04.004
    [20]GU Yuan, WANG Yong-Gang, MAO Chu-Sheng, NI Yuan-Long, WU Feng-Chun, MA Min-Xun. Preliminary Experiments on the Equation of State of Materials at High-Pressure Produced by Laser Driven Shock Waves[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(1569) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return