Citation: | LI Xue, XIAO Lijun, SONG Weidong. Dynamic Behavior of 3D Printed Graded Gyroid Structures under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201. doi: 10.11858/gywlxb.20210701 |
[1] |
MONTAZERIAN H, DAVOODI E, ASADI-EYDIVAND M, et al. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties [J]. Materials & Design, 2017, 126: 98–114. doi: 10.1016/j.matdes.2017.04.009
|
[2] |
SHEN M H, QIN W, XING B H, et al. Mechanical properties of 3D printed ceramic cellular materials with triply periodic minimal surface architectures [J]. Journal of the European Ceramic Society, 2021, 41(2): 1481–1489. doi: 10.1016/j.jeurceramsoc.2020.09.062
|
[3] |
Al-KETAN O, ROWSHAN R, AL-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
|
[4] |
MASKERY I, ABOULKHAIR N T, AREMU A O, et al. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices [J]. Additive Manufacturing, 2017, 16: 24–29. doi: 10.1016/j.addma.2017.04.003
|
[5] |
BONATTI C, MOHR D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments [J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 1–26. doi: 10.1016/j.jmps.2018.08.022
|
[6] |
CHEN Z Y, XIE Y M, WU X, et al. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties [J]. Materials & Design, 2019, 183: 108109. doi: 10.1016/j.matdes.2019.108109
|
[7] |
MASKERY I, ASHCROFT I A. The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering [J]. Additive Manufacturing, 2020, 36: 101548. doi: 10.1016/j.addma.2020.101548
|
[8] |
YÁNEZ A, CUADRADO A, MARTEL O, et al. Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction [J]. Materials & Design, 2018, 140: 21–29. doi: 10.1016/j.matdes.2017.11.050
|
[9] |
HARUN W S W, KAMARIAH M S I N, MUHAMAD N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technology, 2018, 327: 128–151. doi: 10.1016/j.powtec.2017.12.058
|
[10] |
BAI L, GONG C, CHEN X H, et al. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations [J]. International Journal of Mechanical Sciences, 2020, 182: 105735. doi: 10.1016/j.ijmecsci.2020.105735
|
[11] |
NOVAK N, KRSTULOVIĆ-OPARA L, REN Z R, et al. Compression and shear behaviour of graded chiral auxetic structures [J]. Mechanics of Materials, 2020, 148: 103524. doi: 10.1016/j.mechmat.2020.103524
|
[12] |
XIAO L J, SONG W D, XU X. Experimental study on the collapse behavior of graded Ti-6Al-4V micro-lattice structures printed by selective laser melting under high speed impact [J]. Thin-Walled Structures, 2020, 155: 106970. doi: 10.1016/j.tws.2020.106970
|
[13] |
刘宇, 郝琪, 田钰楠, 等. 负泊松比梯度蜂窝结构研究 [J]. 湖北汽车工业学院学报, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013
LIU Y, HAO Q, TIAN Y N, et al. Study on structure of negative poisson’s ratio gradient honeycomb [J]. Journal of Hubei University of Automotive Technology, 2020, 34(3): 64–68, 74. doi: 10.3969/j.issn.1008-5483.2020.03.013
|
[14] |
张权, 高松林, 杜志鹏, 等. 星形梯度负泊松比蜂窝结构面内冲击动态响应 [J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023
ZHANG Q, GAO S L, DU Z P, et al. In-plane impact dynamic response of star-shaped gradient negative poisson's ratio honeycomb structure [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(5): 886–891. doi: 10.3963/j.issn.2095-3844.2020.05.023
|
[15] |
XIAO L J, SONG W D. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: experiments [J]. International Journal of Impact Engineering, 2018, 111: 255–272. doi: 10.1016/j.ijimpeng.2017.09.018
|
[16] |
ZHAO M, ZHANG D Z, LIU F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces [J]. International Journal of Mechanical Sciences, 2020, 167: 105262. doi: 10.1016/j.ijmecsci.2019.105262
|
[17] |
MASKERY I, STURM L, AREMU A O, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing [J]. Polymer, 2018, 152: 62–71. doi: 10.1016/j.polymer.2017.11.049
|
[18] |
ZHANG L, FEIH S, DAYNES S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading [J]. Additive Manufacturing, 2018, 23: 505–515. doi: 10.1016/j.addma.2018.08.007
|
[19] |
MCKOWN S, SHEN Y, BROOKES W K, et al. The quasi-static and blast loading response of lattice structures [J]. International Journal of Impact Engineering, 2008, 35(8): 795–810. doi: 10.1016/j.ijimpeng.2007.10.005
|
[20] |
冯根柱, 于博丽, 李世强, 等. 多层级夹芯结构的变形与能量吸收 [J]. 高压物理学报, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
FENG G Z, YU B L, LI S Q, et al. Deformation and energy absorption of multi-hierarchical sandwich structures [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
|
[21] |
XIAO L J, LI S, SONG W D, et al. Process-induced geometric defect sensitivity of Ti-6Al-4V lattice structures with different mesoscopic topologies fabricated by electron beam melting [J]. Materials Science and Engineering: A, 2020, 778: 139092. doi: 10.1016/j.msea.2020.139092
|
[22] |
ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009
|
[1] | LIU Jiajing, LI Zihao, WANG Zhihua, LIU Zhifang, LI Shiqiang. Hybrid Design of Triply Periodic Minimal Surface Structure and Its Mechanical Behavior under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783 |
[2] | WANG Jiuqiang, LI Yongcun, LIU Chaoyang, LEI Keming, GUO Zhangxin, LUAN Yunbo. Synergistic Effects of “Carbon Fibre-Graphene” Hybrid Systems and Microwave Post-Treatment Processes on the Mechanics of 3D Printed Polyurethane Composites[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 034102. doi: 10.11858/gywlxb.20230814 |
[3] | HUANG Qiaoqiao, DENG Qingtian, LI Xinbo, CHEN Li. Deformation Mode and Energy Absorption of Modularized Cellular Structures[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064106. doi: 10.11858/gywlxb.20240737 |
[4] | LI Chengbing, LI Rui, ZHANG Jitao, YE Qiang, LI Renfu. In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604 |
[5] | NIU Lingeng, YAN Dong, WANG Genwei, SONG Hui, GUO Meiqing. Quasi-Static Axial Energy Absorption Characteristics and Optimization of Sunflower-Like Sandwich Cylindrical Shells[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044206. doi: 10.11858/gywlxb.20230637 |
[6] | BU Lehu, WANG Pengfei, WU Yangfan, WANG Deya, XU Songlin. Research on Dynamic Mechanical Properties of Two-Phase Composites Based on Convolutional Neural Network[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034201. doi: 10.11858/gywlxb.20230601 |
[7] | HUANG Cuiping, DENG Xiaolin. Energy Absorption Characteristics of Circular Nested HierarchicalMulti-Cell Tubes under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044104. doi: 10.11858/gywlxb.20230619 |
[8] | XIE Yue, HOU Hailiang, LI Dian. Dynamic Response Characteristics of Aluminum Foam Sandwich Structure under Explosion Load in Cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103. doi: 10.11858/gywlxb.20210849 |
[9] | LIU Yong, SU Buyun, LIU Haowei, SHU Xuefeng. In-Plane Dynamic Mechanical Response of Auxetic Hexagonal Honeycomb under Oblique Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044202. doi: 10.11858/gywlxb.20210895 |
[10] | WANG Chunguo, WEN Ansong, FAN Zihao, HUANG Wei. Dynamic Failure of Foam-Reinforce Composite Lattice Sandwich Beam to Local Impulsive Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807 |
[11] | HAO Xiaoheng, ZHANG Tianhui, WANG Genwei, SHEN Wenhao, YAN Dong, SHA Fenghuan. Axial Compression and Energy Absorption of the Sinusoidal Corrugated Cylinder under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044206. doi: 10.11858/gywlxb.20220518 |
[12] | YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827 |
[13] | LI Teng, ZHANG Chenfan, DENG Qingtian, LI Xinbo, WEN Jinpeng. Optimized Design and Energy Absorption of TPU Material Based on Hierarchical Structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542 |
[14] | YAO Fen, ZHANG Yingjie, YAO Pengfei, HAN Yang, LI Zhiqiang. Impact Resistance of Symmetrical and Asymmetric Tempered Laminated Glass[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861 |
[15] | YANG Xiangli, HE Yong, HE Yuan, WANG Chuanting, XU Tao, TIAN Weixi, ZHOU Jie. 3D Mesoscopic Simulation of Shock Compression Behaviors of Reactive Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539 |
[16] | LI Wenwei, HUANG Wei. Impulsive Resistance of Metallic Honeycomb Sandwich Structures Subjected to Underwater Impulsive Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035102. doi: 10.11858/gywlxb.20190790 |
[17] | HOU Xianglong, LEI Jianyin, LI Shiqiang, WANG Zhihua, LIU Zhifang. Tension Mechanical Behavior of 3D Printed Composite Materials Inspired by Nacre[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014102. doi: 10.11858/gywlxb.20190768 |
[18] | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[19] | LIU Qingqing, GUO Baoqiao, SHI Chen, CHEN Pengwan. Deformation of Carbon Fiber Laminates underExplosion Based on 3D-DIC[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064201. doi: 10.11858/gywlxb.20190739 |
[20] | WANG Yan-Jin, LIU Jun, FENG Qi-Jing, WANG Zheng, HAO Peng-Cheng. 3D Eulerian Numerical Method for Debris Clouds[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 300-306. doi: 10.11858/gywlxb.2014.03.006 |