
Citation: | SUN Feiyue, FAN Junqi, GUO Jiaqi, SHI Xiaoyan, LIU Xiliang, ZHU Binzhong, ZHANG Hengyuan. Rockburst Proneness Criterion Based on Energy Principle[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035202. doi: 10.11858/gywlxb.20200650 |
泡沫铝作为一种新型功能与结构材料在近几年被广泛应用。其自身独特的多孔结构决定了它具有低密度、高孔隙率和大的比表面积。这些特性使它具有隔音降噪、缓冲吸能等多种作用,被广泛应用于航空航天、国防军事、汽车防护等领域。已有研究表明:泡沫材料在压缩过程中的应力-应变曲线呈现明显的3个阶段,分别是线弹性阶段、塑性平台阶段和密实阶段[1],其中塑性平台阶段是由于胞孔大量坍塌产生的,该过程能够吸收较多的能量,胞孔的破坏模式呈现多样化,因此研究泡沫铝胞孔的破坏模式及微观变形机理对提高泡沫铝的吸能效率有着重要意义。
泡沫铝变形过程中往往呈现出典型的不均匀压缩特性,利用数字散斑和图像相关方法研究其变形特征具有全场性和直观性等优点[2-3]。魏志强等[4]利用高速摄影技术对泡沫铝的分离式霍普金森压杆(SHPB)实验进行了跟踪拍摄,发现利用图像处理软件分析所得到的应变结果与SHPB后处理得到的应变结果基本一致。Jung等[5]利用数字图像相关法对Ni/Al复合开孔泡沫铝的微观变形进行了研究,发现这种方法可以有效地观察到泡沫铝的微观变形。房亮等[6]通过数字图像相关法研究了闭孔泡沫铝的压缩力学行为,认为闭孔泡沫铝在弹性范围内受压时具有较高的线性度,且发现单个孔的变形特征与孔壁的形态有关。章超等[7]基于数字图像相关法的原理对泡沫铝的冲击压缩过程进行了拍摄跟踪,结果表明在压缩过程中会随机产生多个变形带,形状主要有斜“I”型和“V”型。Kadkhodapour等[8]、杨福俊等[9]在对闭孔泡沫铝变形的研究中发现,泡沫铝的宏观变形受单个胞体变形的影响,且单个胞体的变形模式与胞体的形状以及胞体分布的随机性有关。在泡沫铝研究中以闭孔泡沫铝较多[10-12]。潘艺等[13]认为基体材料和相对密度影响泡沫铝的变形特性,且变形特性也与胞孔分布的随机性有关。Mu等[14]提出胞体的变形与自身的形态有关,且存在4种失效模式。杨宝等[15]通过观察冲击过程中试件的变形图,发现泡沫铝在动态下的破坏模式与准静态下的类似,变形破坏模式有节点旋转变形、悬臂壁弯曲变形、剪切变形破坏、水平曲壁压弯变形以及斜向细孔壁屈曲变形等。
球形孔开孔泡沫铝由于胞元尺寸和形状统一,在各个方向上的力学性能基本一致,闭孔泡沫铝相对密度较低,且陈永涛等[16]认为相对密度对吸能效率的极值影响较小,并得出闭孔泡沫铝单位体积吸收的能量低于开孔泡沫铝的结论。对开孔泡沫铝应变率效应的研究结果不一:Deshpande[17]、Mukai[18]等的研究表明,开孔泡沫铝对应变率不敏感;程和法等[19]认为泡沫铝的压缩性能具有明显的应变率效应,且应变率越高,吸能效果越好。球形孔开孔泡沫铝由于存在孔壁,兼具通孔和闭孔泡沫铝的特征,可以在某些特殊应用中发挥缓冲耗能的作用。然而,球形孔开孔泡沫铝在压缩载荷下的力学性能、变形特征和细观机理尚不清楚,传统泡沫铝在由变形集中带演化主导的应力平台阶段内材料整体和胞元孔的变形如何影响球形孔泡沫铝的力学行为也亟需研究。基于此,本研究首先针对球形孔开孔泡沫铝的静-动态力学性能进行实验研究,再利用数字图像相关技术对其在准静态压缩下的介观变形机制进行分析。
实验材料选用北京强业泡沫金属公司提供的球形孔开孔泡沫铝,基体材料为纯铝,采用造孔剂渗流法制备,胞孔直径6 mm,壁面连通孔孔径1~2 mm,试样密度0.9~1.0 g/cm3。静态力学性能实验的试样尺寸为ø30 mm×35 mm,采用电子万能试验机测试。动态力学性能实验分别采用落锤试验机和SHPB,试样尺寸分别为ø30 mm×35 mm和ø30 mm×20 mm。落锤质量约40 kg,冲击高度约1.2 m,锤头上安装加速度传感器测量冲击过程中的加速度,并通过积分换算得到工程应力-应变曲线。SHPB装置杆件直径为50 mm,子弹、入射杆和透射杆长度分别为1.0、2.5和2.5 m,考虑到泡沫材料的透射波信号较弱,采用半导体应变计测量透射波。另外,为研究准静态加载下泡沫铝和胞元孔的具体变形模式,采用GOM 5M三维全场动态测量系统拍摄球形开孔泡沫铝的准静态压缩过程,基于ARAMIS软件对采集图片进行图像处理,获得位移场和应变场信息。实验装置见图1。实验所用两部相机的焦距均为400 mm,分辨率为2 448×2 050像素,标定视场尺寸为44 mm×55 mm。考虑到泡沫铝表面不规则,散斑实验采用矩形试样,尺寸为35 mm×35 mm×35 mm,在观测面喷涂黑白相间随机分布的散斑场(见图2)。加载速率1 mm/min,图像采集间隔为2 s。
对泡沫铝力学性能进行分析,图3(a)为准静态压缩过程中泡沫铝的应力-应变曲线,可知:曲线较为光滑平缓,与胞元孔结构和尺寸一致性较高有关;平台阶段较为平稳,主要是由于孔壁厚度较大,胞元孔坍塌时承载能力没有突然降低,体现了球形孔泡沫铝的优点。
动态实验曲线由相同应变率下3组实验曲线的平均值获得,且取0.05应变下的应力为屈服应力[20]。对比不同应变率下的应力-应变曲线(图3(b))可知,屈服强度在应变率为0.001 s–1时为8.592 MPa,随着应变率的增大,屈服强度增大,在应变率为2 200 s–1时为15.387 MPa,增大了80%。为了定量分析能量吸收特性[20],对比可知20%应变对应的流动应力从14.205 MPa增大到18.236 MPa,提高了28%,吸收能量从2.03 MJ/m3增大到2.78 MJ/m3,增加了40%。文献[21]指出泡沫铝的平台应力接近应变量为0.2时的流动应力,可见该泡沫铝的静、动态力学性能差异显著,存在明显的应变率效应,且动态冲击下泡沫铝具有更高的屈服强度,能吸收更多能量,动态吸能效率的提高说明球形孔泡沫铝具有优异的力学性能,更有利于其作为高速缓冲吸能结构的芯层。
图4为球形开孔泡沫铝压缩过程位移场,可见,在压缩时间t=173.070 s时(见图4(b))虚线位置出现一条局部变形带,随着加载的进行出现第二条变形带(图4(c)、4(d))。局部变形带的产生是泡沫铝胞孔不同形式的坍塌造成的,与胞孔的分布以及孔壁的位置有关,最先发生坍塌的胞孔组成了第一条变形带,这种现象与闭孔泡沫铝相似,都是局部变形带的产生和演化导致材料应力-应变曲线出现典型的平台阶段。由图3中泡沫铝的应力-应变曲线可知,在平台阶段泡沫铝吸收大量能量,这一阶段就是胞孔大量坍塌出现局部变形带的过程。
通过观察与统计胞孔破坏模式,发现胞孔的变形模式主要有3种,如图5所示,其中:图5(a)为孔壁屈曲变形,图5(b)中的孔发生了扭转变形,图5(c)显示在压缩时孔壁既发生扭转变形又存在剪切变形。这与文献[9]中提到的闭孔泡沫铝胞孔的变形模式类似。
为了分析泡沫铝的介观变形机制,选取单个孔的应变场(图6(a))进行分析。图6(c)为孔的侧面图,可以看出是一个半球形。由该胞孔的应变场(图7)可以看出,在加载时间为173.070 s时,在胞孔壁上的通孔边界处出现一条变形带;继续加载时,在同一起始位置出现第二条变形带,且变形带上应变较大,单个胞孔在压缩变形过程中的应变分布存在很明显的不均匀性。两条变形带的起始位置相同,都是从胞孔上通孔的缺陷处开始,即图6(b)红框中的缺口,且胞孔向后凸起,导致在压缩过程中变形沿着局部变形带发生屈曲;在压缩时间为473.120 s时(见图7(d))缺口变深,胞孔局部变形带就是由于缺口处的应力集中造成的,且多数胞孔情况类似。由此可知,开孔泡沫铝在压缩过程中单个胞体孔壁上由于孔壁缺陷处的应力集中会出现多条变形带,且由于孔壁的凸起,导致胞孔轴向屈曲。
为了分析孔壁的变形模式,选取如图8所示3个厚度不同、方向不同的孔壁组成的区域,单个孔壁呈现“I”型,该结构在泡沫铝中较为普遍,且1区孔壁在变形带处,“I”型孔壁的断裂与破坏直接导致了孔的坍塌变形。在3个孔壁上各选几个点(图8(b)),由分析软件计算出各点的应变-时间曲线,如图9所示。1区上的点既有压应变又有拉应变,在加载时间273.063 s后孔壁有了明显破坏,而在孔壁破坏的过程中,由图9(b)与图10(d)都可以看出此时点7有较大的拉应变,达到30%,而点6上压应变较大,因此1区孔壁在破坏过程中受到过较大拉应力,且最终断裂,过程中存在剪切破坏。在153.071 s时,3区上的点1、2、3、4都为压应变,呈线性增大,即孔壁变形模式为孔壁屈曲变形,2区上的点8、9、10处既存在压应变又存在拉应变,且2区在1区孔壁破坏并最终断裂前变形很小,在1区断裂后其变形明显,孔壁上点的拉应变增大,因此可以判断该孔壁是由于1区孔壁破坏造成的扭转与剪切的复合变形。可见在泡沫铝的压缩过程中胞孔的变形模式是由于孔壁变形的多样化造成的,孔壁的变形模式主要有孔壁屈曲变形、剪切、扭转加剪切复合变形3种,最先发生破坏的孔壁变形模式为剪切变形。
经过以上对宏观与介观的分析可以发现,整体变形带的产生与胞孔的变形有关,胞孔的变形模式由孔壁的变形模式决定,孔壁的破坏直接造成了胞孔的坍塌,而胞孔的坍塌又明显地反映出局部变形带的存在。孔壁的3种变形模式决定了胞孔的变形模式,且局部变形带本身由最先发生破坏的孔壁连接而成,对多组实验的统计表明,多条变形带上孔壁的破坏模式以剪切破坏为主。孔壁的变形模式与孔壁的厚度以及方向有关,3种变形模式中剪切变形最不稳定,导致孔壁最先破坏,并出现局部变形带。
利用三维全场应变测量系统全面分析了球形开孔泡沫铝在准静态压缩下的介观变形,得到以下结论。
(1)球形孔开孔泡沫铝具有明显的应变率效应,随着应变率的增加,屈服强度增加,平台段提高,且从准静态到应变率为2000 s–1的过程中,应变在0.2时能量吸收增加40%。
(2)球形孔开孔泡沫铝在细观结构和变形行为上接近于传统闭孔泡沫金属,变形集中带的产生和演化主导了材料的屈服平台阶段行为,局部变形带的产生机理与闭孔泡沫铝类似。
(3)单个胞体在压缩过程中会在孔壁缺陷处出现局部变形带,且不止一条,主要是由于缺陷位置经过压缩后出现的应力集中造成的。
(4)胞孔的变形模式主要有3种,屈曲变形、剪切变形、扭转加剪切复合变形;主要由孔壁的3种变形模式决定,孔壁的变形模式与孔壁的厚度以及加载方向有关。
[1] |
冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673.
FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673.
|
[2] |
MA T H, TANG C A, TANG L X, et al. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station [J]. Tunnelling and Underground Space Technology, 2015, 49: 345–368. doi: 10.1016/j.tust.2015.04.016
|
[3] |
魏新江, 陈涛涛, 王霄, 等. 岩爆灾害研究与进展 [J]. 现代隧道技术, 2020, 57(2): 1–12.
WEI X J, CHEN T T, WANG X, et al. Progress in research of the rockburst hazard [J]. Modern Tunnelling Technology, 2020, 57(2): 1–12.
|
[4] |
冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控 [M]. 北京: 科学出版社, 2013.
FENG X T, CHEN B R, ZHANG C Q, et al. Mechanism, warning and dynamic control of rockburst development processes [M]. Beijing: Science Press, 2013.
|
[5] |
ROOHOLLAH S F, ABBAS T. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques [J]. Engineering with Computers, 2018, 35(9): 659–675.
|
[6] |
HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186. doi: 10.1016/S1365-1609(97)80069-X
|
[7] |
RUSSNES B F. Analyses of rockburst in tunnels in valley sides [D]. Trondheim: Norwegian Institute of Technology, 1974.
|
[8] |
JOHN C J, NEVILLE G W. Fundamentals of rock mechanics [J]. Science Paperbacks, 1979, 9(3): 251–252.
|
[9] |
KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304.
|
[10] |
张传庆, 卢景景, 陈珺, 等. 岩爆倾向性指标及其相互关系探讨 [J]. 岩土力学, 2017, 38(5): 1397–1404.
ZHANG C Q, LU J J, CHEN J, et al. Discussion on rock burst proneness indexes and their relation [J]. Rock and Soil Mechanics, 2017, 38(5): 1397–1404.
|
[11] |
BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support [J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189–236.
|
[12] |
徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究 [J]. 岩土工程学报, 1999, 21(5): 569–572.
XU L S, WANG L S. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569–572.
|
[13] |
谷明成, 何发亮, 陈成宗. 秦岭隧道岩爆的研究 [J]. 岩石力学与工程学报, 2002, 21(9): 1324–1329.
GU M C, HE F L, CHEN C Z. Study on rockburst in Qinling tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1324–1329.
|
[14] |
ZHANG S C, MA T H, TANG C A, et al. Microseismic monitoring and experimental study on mechanism of delayed rockburst in deep-buried tunnels [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2771–2788. doi: 10.1007/s00603-020-02069-4
|
[15] |
陈炳瑞, 冯夏庭, 肖亚勋, 等. 深埋隧洞TBM施工过程围岩损伤演化声发射试验 [J]. 岩石力学与工程学报, 2010, 29(8): 1562–1569.
CHEN B R, FENG X T, XIAO Y X, et al. Acoustic emission test on damage evolution of surrounding rock in deep-buried tunnel during TBM excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1562–1569.
|
[16] |
吴其斌. 微重力方法在岩爆预测中的应用 [J]. 地球物理学进展, 1993, 8(3): 136–142.
WU Q B. Application of microgravity method in rockburst prediction [J]. Progress in Geophysics, 1993, 8(3): 136–142.
|
[17] |
ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275–288. doi: 10.1007/s00603-011-0218-6
|
[18] |
张艳博, 杨震, 姚旭龙, 等. 基于红外辐射时空演化的巷道岩爆实时预警方法实验研究 [J]. 采矿与安全工程学报, 2018, 35(2): 299–307.
ZHANG Y B, YANG Z, YAO X L, et al. Experimental study on real-time early warning method of tunnel rock burst based on infrared radiation spatial and temporal evolutions [J]. Journal of Mining & Safety Engineering, 2018, 35(2): 299–307.
|
[19] |
吴枋胤, 何川, 汪波, 等. 基于应力判据法的拉林铁路岩爆烈度分级研究 [J/OL]. 西南交通大学学报.(2020–05–14)[2020–12–08]. https://read.cnki.net/web/Journal/Article/XNJT20200513004.html.
WU F Y, HE C, WANG B, et al. Study on the classification of rockburst intensity of Lasa-Linzhi Railway based on stress criterion [J/OL]. Journal of Southwest Jiaotong University. (2020–05–14) [2020–12–08]. https://read.cnki.net/web/Journal/Article/XNJT20200513004.html.
|
[20] |
李子运, 吴光, 黄天柱, 等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究 [J]. 岩石力学与工程学报, 2018, 37(3): 662–670.
LI Z Y, WU G, HUANG T Z, et al. Variation of energy and criteria for strength failure of shale under traixial cyclic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 662–670.
|
[21] |
杨凡杰, 周辉, 卢景景, 等. 岩爆发生过程的能量判别指标 [J]. 岩石力学与工程学报, 2015, 34(Suppl 1): 2706–2714.
YANG F J, ZHOU H, LU J J, et al. An enegry criterion in process of rockburst [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1): 2706–2714.
|
[22] |
李夕兵, 宫凤强, 王少锋, 等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据 [J]. 岩石力学与工程学报, 2019, 38(4): 708–723.
LI X B, GONG F Q, WANG S F, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708–723.
|
[23] |
GONG F Q, WANG Y L, LUO S. Rockburst proneness criteria for rock materials: review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. doi: 10.1007/s11771-020-4511-y
|
[24] |
KARCHEVSKY A L. Determination of the possibility of rock burst in a coal seam [J]. Journal of Applied and Industrial Mathematics, 2017, 11(4): 527–534. doi: 10.1134/S199047891704010X
|
[25] |
COOK N G W. A note on rockbursts considered as a problem of stability [J]. Journal of the South African Institute of Mining and Metallugy, 1965, 65(8): 437–446.
|
[26] |
RYDER J A. Excess shear stress in the assessment of geologically hazardous situations [J]. Journal of the South African Institute of Mining and Metallurgy, 1988, 88(1): 27–39.
|
[27] |
MITRI H S, TANG B, SIMON R. FE modelling of mining-induced energy release and storage rates [J]. Journal of the South African Institute of Mining and Metallurgy, 1999, 99(2): 103–110.
|
[28] |
WILES T D. Correlation between local energy release density observed bursting conditions at Creighton Mine [R]. Sudbury, Canada: Mines Research, 1998.
|
[29] |
苏国韶. 高地应力下大型地下洞室群稳定性分析与智能优化研究 [D]. 武汉: 中国科学院, 2006.
SU G S. Study on stability analysis and intelligent optimization for large underground caverns under high geostress condition [D]. Wuhan: Graduate University of the Chinese Academy of Sciences, 2006.
|
[30] |
邱士利, 冯夏庭, 江权, 等. 深埋隧洞应变型岩爆倾向性评估的新数值指标研究 [J]. 岩石力学与工程学报, 2014, 33(10): 2007–2017.
QIU S L, FENG X T, JIANG Q, et al. A novel numerical index for estimating strainburst vulnerability in deep tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 2007–2017.
|
[31] |
BIENIAWSKI Z T. Mechanism of brittle fracture of rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 405–430.
|
[32] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010.
XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks baded on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010.
|
[33] |
许博, 谢和平, 涂扬举. 瀑布沟水电站地下厂房开挖过程中岩爆应力状态的数值模拟 [J]. 岩石力学与工程学报, 2007, 26(Suppl 1): 2894–2900.
XU B, XIE H P, TU Y J. Numerical simulation of rockburst stress state during excavation of underground powerhouse of Pubugou Hydropower Station [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 1): 2894–2900.
|
[34] |
郭建强, 赵青, 王军保, 等. 基于弹性应变能岩爆倾向性评价方法研究 [J]. 岩石力学与工程学报, 2015, 34(9): 1886–1893.
GUO J Q, ZHAO Q, WANG J B, et al. Rockburst prediction based on elastic strain energy [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1886–1893.
|
[35] |
王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法 [J]. 岩石力学与工程学报, 1998, 17(5): 493–501.
WANG Y H, LI W D, LI Q G, et al. Method of fuzzy comprehensive evaluations for rockburst prediction [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 493–501.
|
[36] |
ZHANG J J, FU B J, LI Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method [M]//QIAN Q H, ZHOU Y X. Harmnonising rock engineering and the environment, Boca Raton: CRC Press, 2011: 562−563.
|
[37] |
尚彦军, 张镜剑, 傅冰骏. 应变型岩爆三要素分析及岩爆势表达 [J]. 岩石力学与工程学报, 2013, 32(8): 1520–1527.
SHANG Y J, ZHANG J J, FU B J. Analyses of three parameters for strain mode rockburst and expression of rockburst potential [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1520–1527.
|
[38] |
中华人民共和国水利部. 工程岩体分级标准: GB/T 50218—2014 [S]. 北京: 中国计划出版社, 2014.
Ministry of Water Resources of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014 [S]. Beijing: China Planning Press, 2014.
|
[39] |
蔡美峰, 何满潮, 刘东燕. 岩石力学与工程 [M]. 2版. 北京: 科学出版社, 2013.
CAI M F, HE M C, LIU D Y. Rock Mechanics and Engineering [M]. 2nd ed. Beijing: Science Press, 2013.
|
[40] |
周辉, 杨凡杰, 张传庆, 等. 岩爆与冲击地压数值模拟与评估预测方法 [M]. 北京: 科学出版社, 2015.
ZHOU H, YANG F J, ZHANG C Q, et al. Methods for numerical simulation and evaluation of rock burst and rock burst [M]. Beijing: Science Press, 2015.
|
[41] |
骆正坤, 李新平, 孙吉主, 等. 深埋跨断层隧道爆破开挖动力响应规律研究 [J]. 爆破, 2020, 37(3): 56–62.
LUO Z K, LI X P, SUN J Z, et al. Study on dynamic response law of blasting excavation of deep buried cross fault tunnel [J]. Blasting, 2020, 37(3): 56–62.
|
[42] |
周航, 陈仕阔, 张广泽, 等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究 [J]. 工程地质学报, 2020, 28(6): 1419–1429.
ZHOU H, CHEN S K, ZHANG G Z, et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel [J]. Journal of Engineering Geology, 2020, 28(6): 1419–1429.
|
[43] |
石崇, 褚卫江, 郑文棠. 块体离散元数值模拟技术及工程应用 [M]. 北京: 中国建筑工业出版社, 2016.
SHI C, CHU W J, ZHENG W T. Block discrete element numerical simulation technology and engineering application [M]. Beijing: China Architecture and Building Press, 2016.
|
[44] |
冯夏庭, 张传庆, 陈炳瑞, 等. 岩爆孕育过程的动态调控 [J]. 岩石力学与工程学报, 2012, 31(10): 1983–1997.
FENG X T, ZHANG C Q, CHEN B R, el al. Dynamical control of rockburst evolution process [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1983–1997.
|
[1] | ZHOU Jian-Shi. The High Oxygen Pressure Synthesis of Metallic LaCuO3 and the XPS Study on Cu3+ State[J]. Chinese Journal of High Pressure Physics, 1992, 6(1): 7-14 . doi: 10.11858/gywlxb.1992.01.002 |
[2] | LIU Hong-Jian, LI Li-Ping, WANG Yi-Feng, SU Wen-Hui. Structural Characters and the Conductivity of Nd2-xCexCuO4 Samples prepared under Atmosphere and High Pressure[J]. Chinese Journal of High Pressure Physics, 1991, 5(3): 161-168 . doi: 10.11858/gywlxb.1991.03.001 |
[3] | LIU Zhen-Xian, CUI Qi-Liang, ZOU Guang-Tian. Dependence of the Quenching Pressures of Ruby R-Line Fluorescence on the Wavelengths of the Incident Laser Beams under Ultra-High Pressure[J]. Chinese Journal of High Pressure Physics, 1991, 5(1): 1-7 . doi: 10.11858/gywlxb.1991.01.001 |
[4] | SUN Bao-Quan, WANG Yi-Feng, LIU Hong-Jian, LI Li-Ping, SU Wen-Hui. The Influences of Cool- and Hot-Pressure Treatment on the Phase Transition and Superconductivity of YBa2Cu3O7-[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 246-253 . doi: 10.11858/gywlxb.1990.04.002 |
[5] | LIU Zhen-Xian, CUI Qi-Liang, ZHAO Yong-Nian, ZOU Guang-Tian. Influence of Pressure-Transmitting Media on the Lattice Vibration and Phase Transition Pressure-High Pressure Raman Spectra Studies of -Bi2O3[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001 |
[6] | YANG Hai-Bin, LI Ming-Hui, WANG Li-Zhong, ZOU Guang-Tian. High Pressure X-Ray Study on NiO Isothermal Equation of State up to 50 GPa[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 241-245 . doi: 10.11858/gywlxb.1990.04.001 |
[7] | LI Zhao-Ning, HU Dong, SUN Zhu-Mei, WANG Gui-Chao. Detonation Temperature for Hydrogen-Oxygen Mixtures Using Multi-wavelength Pyrometer[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 276-283 . doi: 10.11858/gywlxb.1990.04.007 |
[8] | ZHOU Kai-Yong, YU Xin-Lu. A Material Test Technique for Super-High Pressure Gasket Material[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 7-16 . doi: 10.11858/gywlxb.1990.01.002 |
[9] | XUE Hong-Lu, LU Fang-Yun. The Planar Dynamic Compaction of Tungsten Powder[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 115-124 . doi: 10.11858/gywlxb.1989.02.003 |
[10] | HONG Shi-Ming, LUO Xiang-Jie, WANG Yong-Guo, SUN Zhu-Mei, JIANG Ren-Zhu. Measurement of High Pressure at the Temperature of 600 to 760 ℃ by Melting Point of Plumbum[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 159-164 . doi: 10.11858/gywlxb.1989.02.010 |
[11] | WANG Li-Jun, HU Jing-Zhu, CHE Rong-Zheng, TANG Ru-Ming, CHEN Liang-Chen. A Diamond Anvil Cell with External Heater and Pressure Measurement by Using Ruby at High Temperature[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 335-339 . doi: 10.11858/gywlxb.1988.04.007 |
[12] | WANG Ji-Fang, WANG Ru-Ju, HE Shou-An. The Elastic Behaviour of the Amorphouse Carbon under High Pressure[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 34-41 . doi: 10.11858/gywlxb.1988.01.005 |
[13] | LIU Rui-Gen, WU Shi-Fa. Flash X-Ray Radiographic Image Restoration by Wiener Filter Method[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 346-353 . doi: 10.11858/gywlxb.1988.04.009 |
[14] | WANG Yi-Feng, SU Wen-Hui, QIAN Zheng-Nan, MA Xian-Feng, YAN Xue-Wei. A Study on the High Temperature-High Pressure Stability and the X-Ray Phase Analysis for Compounds R2Fe4/3W2/3O7 with Pyrochlore Structure[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 296-304 . doi: 10.11858/gywlxb.1988.04.002 |
[15] | NIE Chong-Li, CHEN Qi. Gasket Problem in the Ultrahing-Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 113-118 . doi: 10.11858/gywlxb.1988.02.003 |
[16] | PANG Xiao-Feng. Investigation on Superconductivity of Metallic Hydrogen[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 319-326 . doi: 10.11858/gywlxb.1988.04.005 |
[17] | LI Chun-Mei. Image Processing for Flash X-Ray Cineradiography in Detonation Experiments[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 270-276 . doi: 10.11858/gywlxb.1988.03.011 |
[18] | LI Da-Hong. Experimental Studies on the Overdviven Detonation Events in Condensed Explosives[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 81-87 . doi: 10.11858/gywlxb.1987.01.011 |
[19] | YANG Zong-Qing, WU Zhao-Qing, WANG Wei-Dong, ZHANG You-Jun, LI Jia. The Pressure Gradient in the Superhigh Pressure Chamber for Diamond Synthesis[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 176-183 . doi: 10.11858/gywlxb.1987.02.012 |
[20] | GOU Qing-Quan. Mechanism for the Metallization of Solid Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 3-6 . doi: 10.11858/gywlxb.1987.01.001 |