Citation: | CAI Yang, LI Chao, LU Lei. Effects of Microstructure and Loading Characteristics on Spallation of Metallic Materials under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648 |
[1] |
WHELCHEL R L, JR SANDERS T H, THADHANI N N. Spall and dynamic yield behavior of an annealed aluminum-magnesium alloy [J]. Scripta Materialia, 2014, 92: 59–62. doi: 10.1016/j.scriptamat.2014.08.014
|
[2] |
ANTOUN T, CURRAN D R, SEAMAN L, et al. Spall fracture [M]. New York: Springer, 2003.
|
[3] |
TRIVEDI P, ASAY J, GUPTA Y, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading [J]. Journal of Applied Physics, 2007, 102(8): 083513. doi: 10.1063/1.2798497
|
[4] |
LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
|
[5] |
CHEN X, ASAY J, DWIVEDI S, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
|
[6] |
ARMAN B, LUO S N, GERMANN T C, et al. Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures [J]. Physical Review B, 2010, 81(14): 144201. doi: 10.1103/PhysRevB.81.144201
|
[7] |
JOHNSON J N, GRAY Ⅲ G T, BOURNE N K. Effect of pulse duration and strain rate on incipient spall fracture in copper [J]. Journal of Applied Physics, 1999, 86(9): 4892–4901. doi: 10.1063/1.371527
|
[8] |
BUTCHER B, BARKER L, MUNSON D, et al. Influence of stress history on time-dependent spall in metals [J]. AIAA Journal, 1964, 2(6): 977–990. doi: 10.2514/3.2484
|
[9] |
桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究 [J]. 高压物理学报, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008
GUI Y L, LIU C L, WANG Y P, et al. Spall fracture properties of AF1410 steel [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008
|
[10] |
DAVISON L, STEVENS A, KIPP M. Theory of spall damage accumulation in ductile metals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(1): 11–28. doi: 10.1016/0022-5096(77)90017-5
|
[11] |
GRADY D. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
|
[12] |
HANSEN N. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801–806. doi: 10.1016/j.scriptamat.2004.06.002
|
[13] |
JR CALLISTER W D. Fundamentals of materials science and engineering [M]. London: Wiley London, 2000.
|
[14] |
CHENG M, LI C, TANG M, et al. Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors [J]. Acta Materialia, 2018, 148: 38–48. doi: 10.1016/j.actamat.2018.01.029
|
[15] |
REMINGTON T, HAHN E, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
|
[16] |
CHEN T, JIANG Z, PENG H, et al. Effect of grain size on the spall fracture behaviour of pure copper under plate-impact loading [J]. Strain, 2015, 51(3): 190–197. doi: 10.1111/str.12132
|
[17] |
MINICH R W, CAZAMIAS J U, KUMAR M, et al. Effect of microstructural length scales on spall behavior of copper [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2663–2673. doi: 10.1007/s11661-004-0212-7
|
[18] |
ESCOBEDO J, CERRETA E, DENNIS-KOLLER D. Effect of crystalline structure on intergranular failure during shock loading [J]. JOM, 2014, 66(1): 156–164. doi: 10.1007/s11837-013-0798-6
|
[19] |
KANEL G I. Unusual behaviour of usual materials in shock waves [C]//Proceedings of the Journal of Physics Conference Series, 2014, 500: 012001.
|
[20] |
GARKUSHIN G, IGNATOVA O, KANEL G, et al. Submicrosecond strength of ultrafine-grained materials [J]. Mechanics of Solids, 2010, 45(4): 624–632. doi: 10.3103/S0025654410040114
|
[21] |
RAZORENOV S, GARKUSHIN G, IGNATOVA O. Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures [J]. Physics of the Solid State, 2012, 54(4): 790–797. doi: 10.1134/S1063783412040233
|
[22] |
BUCHAR J, ELICES M, CORTEZ R. The influence of grain size on the spall fracture of copper [J]. Journal de Physique Ⅳ, 1991, 1(C3): 623–630.
|
[23] |
SCHWARTZ A J, CAZAMIAS J U, FISKE P S, et al. Grain size and pressure effects on spall strength in copper [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2002.
|
[24] |
MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
|
[25] |
DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al. Atomic scale studies of spall behavior in nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 108(11): 113518. doi: 10.1063/1.3517827
|
[26] |
YUAN F, WU X. Shock response of nanotwinned copper from large-scale molecular dynamics simulations [J]. Physical Review B, 2012, 86(13): 134108. doi: 10.1103/PhysRevB.86.134108
|
[27] |
WILKERSON J, RAMESH K. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
|
[28] |
LI C, YANG K, TANG X, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
|
[29] |
CAI Y, WU H A, LUO S N. A loading-dependent model of critical resolved shear stress [J]. International Journal of Plasticity, 2018, 109: 1–17. doi: 10.1016/j.ijplas.2018.03.011
|
[30] |
TURLEY W, FENSIN S J, HIXSON R, et al. Spall response of single-crystal copper [J]. Journal of Applied Physics, 2018, 123(5): 055102. doi: 10.1063/1.5012267
|
[31] |
PEREZ-BERGQUIST A, CERRETA E K, TRUJILLO C P, et al. Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal [J]. Scripta Materialia, 2011, 65(12): 1069–1072. doi: 10.1016/j.scriptamat.2011.09.015
|
[32] |
OWEN G, CHAPMAN D, WHITEMAN G, et al. Spall behaviour of single crystal aluminium at three principal orientations [J]. Journal of Applied Physics, 2017, 122(15): 155102. doi: 10.1063/1.4999559
|
[33] |
LIN E, SHI H, NIU L. Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(3): 035012. doi: 10.1088/0965-0393/22/3/035012
|
[34] |
AN Q, RAVELO R, GERMANN T C, et al. Shock compression and spallation of single crystal tantalum [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2012.
|
[35] |
HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
|
[36] |
KANEL G, RAZORENOV S, UTKIN A, et al. Spall strength of molybdenum single crystals [J]. Journal of Applied Physics, 1993, 74(12): 7162–7165. doi: 10.1063/1.355032
|
[37] |
VIGNJEVIC R, BOURNE N, MILLETT J, et al. Effects of orientation on the strength of the aluminum alloy 7010-T6 during shock loading: experiment and simulation [J]. Journal of Applied Physics, 2002, 92(8): 4342–4348. doi: 10.1063/1.1505996
|
[38] |
GRAY G, BOURNE N, VECCHIO K, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel [J]. International Journal of Fracture, 2010, 163(1/2): 243–258. doi: 10.1007/s10704-009-9440-6
|
[39] |
TAN J, LU L, LI H, et al. Anisotropic deformation and damage of dual-phase Ti-6Al-4V under high strain rate loading [J]. Materials Science and Engineering: A, 2019, 742: 532–539. doi: 10.1016/j.msea.2018.10.088
|
[40] |
MA L, LIU J, LI C, et al. Effects of alloying element segregation bands on impact response of a 304 stainless steel [J]. Materials Characterization, 2019, 153: 294–303. doi: 10.1016/j.matchar.2019.05.015
|
[41] |
DAI Z H, LU L, CHAI H W, et al. Mechanical properties and fracture behavior of Mg-3Al-1Zn alloy under high strain rate loading [J]. Materials Science and Engineering: A, 2020, 789: 139690.
|
[42] |
YU X, LI T, LI L, et al. Influence of initial texture on the shock property and spall behavior of magnesium alloy AZ31B [J]. Materials Science and Engineering: A, 2017, 700: 259–268. doi: 10.1016/j.msea.2017.06.015
|
[43] |
LI C, HUANG J, TANG X, et al. Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading [J]. Materials Science and Engineering: A, 2017, 705: 265–272. doi: 10.1016/j.msea.2017.08.091
|
[44] |
GALITSKIY S, IVANOV D S, DONGARE A M. Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales [J]. Journal of Applied Physics, 2018, 124(20): 205901. doi: 10.1063/1.5051618
|
[45] |
KOLLER D D, HIXSON R S, GRAY Ⅲ G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
|
[46] |
YU Y, LI C, MA H H, et al. Deformation and spallation of explosive welded steels under gas gun shock loading [J]. Chinese Physics Letters, 2018, 35(1): 104–108.
|
[47] |
LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
|
[48] |
MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994.
|
[49] |
ESCOBEDO J P, CERRETA E K, DENNIS-KOLLER D, et al. Influence of boundary structure and near neighbor crystallographic orientation on the dynamic damage evolution during shock loading [J]. Philosophical Magazine, 2013, 93(7): 833–846. doi: 10.1080/14786435.2012.734638
|
[50] |
WAYNE L, KRISHNAN K, DIGIACOMO S, et al. Statistics of weak grain boundaries for spall damage in polycrystalline copper [J]. Scripta Materialia, 2010, 63(11): 1065–1068. doi: 10.1016/j.scriptamat.2010.08.003
|
[51] |
BROWN A D, WAYNE L, PHAM Q, et al. Microstructural effects on damage nucleation in shock-loaded polycrystalline copper [J]. Metallurgical and Materials Transactions A, 2015, 46(10): 4539–4547. doi: 10.1007/s11661-014-2482-z
|
[52] |
FENSIN S, VALONE S, CERRETA E, et al. Influence of grain boundary properties on spall strength: grain boundary energy and excess volume [J]. Journal of Applied Physics, 2012, 112(8): 083529. doi: 10.1063/1.4761816
|
[53] |
FENSIN S, VALONE S, CERRETA E, et al. Effect of grain boundary structure on plastic deformation during shock compression using molecular dynamics [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 21(1): 015011.
|
[54] |
ZHANG W, KENNEDY G B, MULY K, et al. Effect of aging state on shock induced spall behavior of ultrahigh strength Al-Zn-Mg-Cu alloy [J]. International Journal of Impact Engineering, 2020, 146: 103725. doi: 10.1016/j.ijimpeng.2020.103725
|
[55] |
ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
|
[56] |
RAZORENOV S, KANEL G, HERRMANN B, et al. Influence of nano-size inclusions on spall fracture of copper single crystals [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2007.
|
[57] |
FENSIN S J, WALKER E K, CERRETA E K, et al. Dynamic failure in two-phase materials [J]. Journal of Applied Physics, 2015, 118(23): 235305. doi: 10.1063/1.4938109
|
[58] |
TANG X, LI C, LI H, et al. Cup-cone structure in spallation of bulk metallic glasses [J]. Acta Materialia, 2019, 178: 219–227. doi: 10.1016/j.actamat.2019.08.006
|
[59] |
TANG X, JIAN W, HUANG J, et al. Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading [J]. Materials Science and Engineering: A, 2018, 711: 284–292. doi: 10.1016/j.msea.2017.11.032
|
[60] |
CHEN J, TSCHOPP M A, DONGARE A M. Shock wave propagation and spall failure of nanocrystalline Cu/Ta alloys: effect of Ta in solid-solution [J]. Journal of Applied Physics, 2017, 122(22): 225901. doi: 10.1063/1.5001761
|
[61] |
CHEN J, MATHAUDHU S N, THADHANI N, et al. Unraveling the role of interfaces on the spall failure of Cu/Ta multilayered systems [J]. Scientific Reports, 2020, 10(1): 1–15. doi: 10.1038/s41598-019-56847-4
|
[62] |
HAN W, CERRETA E, MARA N, et al. Deformation and failure of shocked bulk Cu-Nb nanolaminates [J]. Acta Materialia, 2014, 63: 150–161. doi: 10.1016/j.actamat.2013.10.019
|
[63] |
YANG Y, JIANG Z, WANG C, et al. Effects of the phase interface on initial spallation damage nucleation and evolution in dual phase titanium alloy [J]. Materials Science and Engineering: A, 2018, 731: 385–393. doi: 10.1016/j.msea.2018.06.066
|
[64] |
YANG Y, WANG H, WANG C, et al. Effects of the phase interface on spallation damage nucleation and evolution in dual-phase steel [J]. Steel Research International, 2020, 91(6): 1900583. doi: 10.1002/srin.201900583
|
[65] |
RIVERA-DIAZ-DEL-CASTILLO P, VAN DER ZWAAG S, SIETSMA J. A model for ferrite/pearlite band formation and prevention in steels [J]. Metallurgical and Materials Transactions A, 2004, 35(2): 425–433. doi: 10.1007/s11661-004-0353-8
|
[66] |
KANEL G. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1): 173–91.
|
[67] |
MEYERS M. Shock waves and high-strain-rate phenomena in metals: concepts and applications [M]. New York: Springer Science & Business Media, 2012.
|
[68] |
LUO S N, GERMANN T C, AN Q, et al. Shock-induced spall in copper: the effects of anisotropy, temperature, defects and loading pulse [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2009.
|
[69] |
GRAY Ⅲ G T, BOURNE N K, HENRIE B L. On the influence of loading profile upon the tensile failure of stainless steel [J]. Journal of Applied Physics, 2007, 101(9): 093507. doi: 10.1063/1.2720099
|
[70] |
CAI Y, WU H A, LUO S N. Spall strength of liquid copper and accuracy of the acoustic method [J]. Journal of Applied Physics, 2017, 121(10): 105901. doi: 10.1063/1.4978251
|
[71] |
MOSHE E, ELIEZER S, DEKEL E, et al. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1 [J]. Journal of Applied Physics, 1998, 83(8): 4004–4011. doi: 10.1063/1.367222
|
[72] |
JONES D R, FENSIN S J, MARTINEZ D T, et al. Effect of peak stress and tensile strain-rate on spall in tantalum [J]. Journal of Applied Physics, 2018, 124(8): 085901. doi: 10.1063/1.5045045
|
[73] |
TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture [J]. International Journal of Fracture Mechanics, 1968, 4(4): 431–437.
|
[74] |
HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
|
[75] |
WHITEMAN G, KEIGHTLEY P, MILLETT J. The behaviour of 2169 steel under uniaxial stress and uniaxial strain loading [J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 337–346. doi: 10.1007/s40870-016-0069-z
|
[76] |
PAVLENKO A V, MALUGINA S, KAZAKOV D N, et al. Plastic deformation and spall fracture of structural 12Cr18Ni10Ti steel [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2012.
|
[77] |
STEVENS A, TULER F. Effect of shock precompression on the dynamic fracture strength of 1020 steel and 6061-T6 aluminum [J]. Journal of Applied Physics, 1971, 42(13): 5665–5670. doi: 10.1063/1.1659997
|
[78] |
WANG G. Influence of shock pre-compression stress and tensile strain rate on the spall behaviour of mild steel [J]. Strain, 2011, 47(5): 398–404. doi: 10.1111/j.1475-1305.2009.00700.x
|
[79] |
NGUYEN T, LUSCHER D, WILKERSON J. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103875. doi: 10.1016/j.jmps.2020.103875
|
[80] |
WANG Y, HE H, WANG L. Critical damage evolution model for spall failure of ductile metals [J]. Mechanics of Materials, 2013, 56: 131–141. doi: 10.1016/j.mechmat.2012.10.004
|
[81] |
ZENG Z H, LI X Z, LI C, et al. Deformation twinning in a mild steel: loading dependence and strengthening [J]. Materials Science and Engineering: A, 2019, 751: 332–339. doi: 10.1016/j.msea.2019.02.079
|
[82] |
LI C, ZENG Z H, LI Y, et al. Shock-induced twinning and texture in a mild carbon steel [J]. Materials Science and Engineering: A, 2020, 773: 138832.
|
[83] |
CURRAN D, SEAMAN L, SHOCKEY D. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388. doi: 10.1016/0370-1573(87)90049-4
|
[84] |
SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
|
[85] |
TONG W, RAVICHANDRAN G. Inertial effects on void growth in porous viscoplastic materials [J]. ASME Journal of Applied Mechanics, 1995, 62(3): 633–639. doi: 10.1115/1.2895993
|
[86] |
WU X, RAMESH K, WRIGHT T. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(1): 1–26. doi: 10.1016/S0022-5096(02)00079-0
|
[87] |
WILKERSON J, RAMESH K. A dynamic void growth model governed by dislocation kinetics [J]. Journal of the Mechanics and Physics of Solids, 2014, 70: 262–280. doi: 10.1016/j.jmps.2014.05.018
|
[88] |
THOMASON P. Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions [J]. Acta Materialia, 1999, 47(13): 3633–3646. doi: 10.1016/S1359-6454(99)00223-2
|
[89] |
CHEN D, TAN H, YU Y, et al. A void coalescence-based spall model [J]. International Journal of Impact Engineering, 2006, 32(11): 1752–1767. doi: 10.1016/j.ijimpeng.2005.04.009
|
[90] |
白以龙, 柯孚久, 夏蒙棼. 固体中微裂纹系统统计演化的基本描述 [J]. 力学学报, 1991, 23(3): 290–298.
BAI Y L, KE F J, XIA M F. Formulation of statistical evolution of microcracks in solids [J]. Chinese Journal of Theoretical and Applied Mechani, 1991, 23(3): 290–298.
|
[91] |
GURSON A. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and coalescence [D]. Providence, RI: Brown University, 1975.
|
[92] |
TVERGAARD V. Material failure by void growth to coalescence [J]. Advances in Applied Mechanics, 1990, 27: 83–151.
|
[93] |
BENZERGA A, LEBLOND J. Ductile fracture by void growth to coalescence [J]. Advances in Applied Mechanics, 2010, 44: 169–305.
|
[94] |
TANG X C, YAO X H, WILKERSON J W. A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses [J]. International Journal of Plasticity, 2021, 137: 102884. doi: 10.1016/j.ijplas.2020.102884
|
[95] |
JIANG M Q, DAI L H. On the origin of shear banding instability in metallic glasses [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1267–1292. doi: 10.1016/j.jmps.2009.04.008
|
[96] |
CORTES R. The growth of microvoids under intense dynamic loading [J]. International Journal of Solids and Structures, 1992, 29(11): 1339–1350. doi: 10.1016/0020-7683(92)90082-5
|
[97] |
SEAMAN L, CURRAN D R. Inertia and temperature effects in void growth [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2002, 620: 607–610.
|
[98] |
封加波. 金属动态延性破坏的损伤度函数模型[D]. 北京: 北京理工大学, 1992.
|
[99] |
王永刚. 延性金属动态拉伸断裂及其临界损伤度研究[D]. 绵阳: 中国工程物理研究院, 2006.
|