Processing math: 100%
ZHANG Wei, WANG Jianguo, WANG Mian, TAO Jialong. Optimization Study of Pre-Splitting Hole Spacing for Continuous Charging Based on RHT Constitutive Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 015201. doi: 10.11858/gywlxb.20240834
Citation: CAI Yang, LI Chao, LU Lei. Effects of Microstructure and Loading Characteristics on Spallation of Metallic Materials under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648

Effects of Microstructure and Loading Characteristics on Spallation of Metallic Materials under Shock Loading

doi: 10.11858/gywlxb.20200648
  • Received Date: 01 Dec 2020
  • Rev Recd Date: 01 Feb 2021
  • Deformation and damage of metallic materials under shock loading depend on microstructure and loading characteristics. The effects of microstructures such as grain size, texture, grain boundary, phase boundary and element segregation bands on deformation and damage of metallic materials are reviewed, as well as the coupled effects of pulse duration, peak stress and strain rate on spall strength. This review provides a reference for establishing the relationship among microstructure, loading characteristics and deformation and damage behavior of metallic materials under shock loading.

     

  • [1]
    WHELCHEL R L, JR SANDERS T H, THADHANI N N. Spall and dynamic yield behavior of an annealed aluminum-magnesium alloy [J]. Scripta Materialia, 2014, 92: 59–62. doi: 10.1016/j.scriptamat.2014.08.014
    [2]
    ANTOUN T, CURRAN D R, SEAMAN L, et al. Spall fracture [M]. New York: Springer, 2003.
    [3]
    TRIVEDI P, ASAY J, GUPTA Y, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading [J]. Journal of Applied Physics, 2007, 102(8): 083513. doi: 10.1063/1.2798497
    [4]
    LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
    [5]
    CHEN X, ASAY J, DWIVEDI S, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
    [6]
    ARMAN B, LUO S N, GERMANN T C, et al. Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures [J]. Physical Review B, 2010, 81(14): 144201. doi: 10.1103/PhysRevB.81.144201
    [7]
    JOHNSON J N, GRAY Ⅲ G T, BOURNE N K. Effect of pulse duration and strain rate on incipient spall fracture in copper [J]. Journal of Applied Physics, 1999, 86(9): 4892–4901. doi: 10.1063/1.371527
    [8]
    BUTCHER B, BARKER L, MUNSON D, et al. Influence of stress history on time-dependent spall in metals [J]. AIAA Journal, 1964, 2(6): 977–990. doi: 10.2514/3.2484
    [9]
    桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究 [J]. 高压物理学报, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008

    GUI Y L, LIU C L, WANG Y P, et al. Spall fracture properties of AF1410 steel [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34–38. doi: 10.11858/gywlxb.2006.01.008
    [10]
    DAVISON L, STEVENS A, KIPP M. Theory of spall damage accumulation in ductile metals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(1): 11–28. doi: 10.1016/0022-5096(77)90017-5
    [11]
    GRADY D. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [12]
    HANSEN N. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801–806. doi: 10.1016/j.scriptamat.2004.06.002
    [13]
    JR CALLISTER W D. Fundamentals of materials science and engineering [M]. London: Wiley London, 2000.
    [14]
    CHENG M, LI C, TANG M, et al. Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors [J]. Acta Materialia, 2018, 148: 38–48. doi: 10.1016/j.actamat.2018.01.029
    [15]
    REMINGTON T, HAHN E, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
    [16]
    CHEN T, JIANG Z, PENG H, et al. Effect of grain size on the spall fracture behaviour of pure copper under plate-impact loading [J]. Strain, 2015, 51(3): 190–197. doi: 10.1111/str.12132
    [17]
    MINICH R W, CAZAMIAS J U, KUMAR M, et al. Effect of microstructural length scales on spall behavior of copper [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2663–2673. doi: 10.1007/s11661-004-0212-7
    [18]
    ESCOBEDO J, CERRETA E, DENNIS-KOLLER D. Effect of crystalline structure on intergranular failure during shock loading [J]. JOM, 2014, 66(1): 156–164. doi: 10.1007/s11837-013-0798-6
    [19]
    KANEL G I. Unusual behaviour of usual materials in shock waves [C]//Proceedings of the Journal of Physics Conference Series, 2014, 500: 012001.
    [20]
    GARKUSHIN G, IGNATOVA O, KANEL G, et al. Submicrosecond strength of ultrafine-grained materials [J]. Mechanics of Solids, 2010, 45(4): 624–632. doi: 10.3103/S0025654410040114
    [21]
    RAZORENOV S, GARKUSHIN G, IGNATOVA O. Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures [J]. Physics of the Solid State, 2012, 54(4): 790–797. doi: 10.1134/S1063783412040233
    [22]
    BUCHAR J, ELICES M, CORTEZ R. The influence of grain size on the spall fracture of copper [J]. Journal de Physique Ⅳ, 1991, 1(C3): 623–630.
    [23]
    SCHWARTZ A J, CAZAMIAS J U, FISKE P S, et al. Grain size and pressure effects on spall strength in copper [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2002.
    [24]
    MACKENCHERY K, VALISETTY R R, NAMBURU R R, et al. Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu [J]. Journal of Applied Physics, 2016, 119(4): 044301. doi: 10.1063/1.4939867
    [25]
    DONGARE A M, RAJENDRAN A M, LAMATTINA B, et al. Atomic scale studies of spall behavior in nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 108(11): 113518. doi: 10.1063/1.3517827
    [26]
    YUAN F, WU X. Shock response of nanotwinned copper from large-scale molecular dynamics simulations [J]. Physical Review B, 2012, 86(13): 134108. doi: 10.1103/PhysRevB.86.134108
    [27]
    WILKERSON J, RAMESH K. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [28]
    LI C, YANG K, TANG X, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
    [29]
    CAI Y, WU H A, LUO S N. A loading-dependent model of critical resolved shear stress [J]. International Journal of Plasticity, 2018, 109: 1–17. doi: 10.1016/j.ijplas.2018.03.011
    [30]
    TURLEY W, FENSIN S J, HIXSON R, et al. Spall response of single-crystal copper [J]. Journal of Applied Physics, 2018, 123(5): 055102. doi: 10.1063/1.5012267
    [31]
    PEREZ-BERGQUIST A, CERRETA E K, TRUJILLO C P, et al. Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal [J]. Scripta Materialia, 2011, 65(12): 1069–1072. doi: 10.1016/j.scriptamat.2011.09.015
    [32]
    OWEN G, CHAPMAN D, WHITEMAN G, et al. Spall behaviour of single crystal aluminium at three principal orientations [J]. Journal of Applied Physics, 2017, 122(15): 155102. doi: 10.1063/1.4999559
    [33]
    LIN E, SHI H, NIU L. Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(3): 035012. doi: 10.1088/0965-0393/22/3/035012
    [34]
    AN Q, RAVELO R, GERMANN T C, et al. Shock compression and spallation of single crystal tantalum [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2012.
    [35]
    HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
    [36]
    KANEL G, RAZORENOV S, UTKIN A, et al. Spall strength of molybdenum single crystals [J]. Journal of Applied Physics, 1993, 74(12): 7162–7165. doi: 10.1063/1.355032
    [37]
    VIGNJEVIC R, BOURNE N, MILLETT J, et al. Effects of orientation on the strength of the aluminum alloy 7010-T6 during shock loading: experiment and simulation [J]. Journal of Applied Physics, 2002, 92(8): 4342–4348. doi: 10.1063/1.1505996
    [38]
    GRAY G, BOURNE N, VECCHIO K, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel [J]. International Journal of Fracture, 2010, 163(1/2): 243–258. doi: 10.1007/s10704-009-9440-6
    [39]
    TAN J, LU L, LI H, et al. Anisotropic deformation and damage of dual-phase Ti-6Al-4V under high strain rate loading [J]. Materials Science and Engineering: A, 2019, 742: 532–539. doi: 10.1016/j.msea.2018.10.088
    [40]
    MA L, LIU J, LI C, et al. Effects of alloying element segregation bands on impact response of a 304 stainless steel [J]. Materials Characterization, 2019, 153: 294–303. doi: 10.1016/j.matchar.2019.05.015
    [41]
    DAI Z H, LU L, CHAI H W, et al. Mechanical properties and fracture behavior of Mg-3Al-1Zn alloy under high strain rate loading [J]. Materials Science and Engineering: A, 2020, 789: 139690.
    [42]
    YU X, LI T, LI L, et al. Influence of initial texture on the shock property and spall behavior of magnesium alloy AZ31B [J]. Materials Science and Engineering: A, 2017, 700: 259–268. doi: 10.1016/j.msea.2017.06.015
    [43]
    LI C, HUANG J, TANG X, et al. Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading [J]. Materials Science and Engineering: A, 2017, 705: 265–272. doi: 10.1016/j.msea.2017.08.091
    [44]
    GALITSKIY S, IVANOV D S, DONGARE A M. Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal Al at the atomic scales [J]. Journal of Applied Physics, 2018, 124(20): 205901. doi: 10.1063/1.5051618
    [45]
    KOLLER D D, HIXSON R S, GRAY Ⅲ G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
    [46]
    YU Y, LI C, MA H H, et al. Deformation and spallation of explosive welded steels under gas gun shock loading [J]. Chinese Physics Letters, 2018, 35(1): 104–108.
    [47]
    LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
    [48]
    MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994.
    [49]
    ESCOBEDO J P, CERRETA E K, DENNIS-KOLLER D, et al. Influence of boundary structure and near neighbor crystallographic orientation on the dynamic damage evolution during shock loading [J]. Philosophical Magazine, 2013, 93(7): 833–846. doi: 10.1080/14786435.2012.734638
    [50]
    WAYNE L, KRISHNAN K, DIGIACOMO S, et al. Statistics of weak grain boundaries for spall damage in polycrystalline copper [J]. Scripta Materialia, 2010, 63(11): 1065–1068. doi: 10.1016/j.scriptamat.2010.08.003
    [51]
    BROWN A D, WAYNE L, PHAM Q, et al. Microstructural effects on damage nucleation in shock-loaded polycrystalline copper [J]. Metallurgical and Materials Transactions A, 2015, 46(10): 4539–4547. doi: 10.1007/s11661-014-2482-z
    [52]
    FENSIN S, VALONE S, CERRETA E, et al. Influence of grain boundary properties on spall strength: grain boundary energy and excess volume [J]. Journal of Applied Physics, 2012, 112(8): 083529. doi: 10.1063/1.4761816
    [53]
    FENSIN S, VALONE S, CERRETA E, et al. Effect of grain boundary structure on plastic deformation during shock compression using molecular dynamics [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 21(1): 015011.
    [54]
    ZHANG W, KENNEDY G B, MULY K, et al. Effect of aging state on shock induced spall behavior of ultrahigh strength Al-Zn-Mg-Cu alloy [J]. International Journal of Impact Engineering, 2020, 146: 103725. doi: 10.1016/j.ijimpeng.2020.103725
    [55]
    ZHOU T T, HE A M, WANG P, et al. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study [J]. Computational Materials Science, 2019, 162: 255–267. doi: 10.1016/j.commatsci.2019.02.019
    [56]
    RAZORENOV S, KANEL G, HERRMANN B, et al. Influence of nano-size inclusions on spall fracture of copper single crystals [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2007.
    [57]
    FENSIN S J, WALKER E K, CERRETA E K, et al. Dynamic failure in two-phase materials [J]. Journal of Applied Physics, 2015, 118(23): 235305. doi: 10.1063/1.4938109
    [58]
    TANG X, LI C, LI H, et al. Cup-cone structure in spallation of bulk metallic glasses [J]. Acta Materialia, 2019, 178: 219–227. doi: 10.1016/j.actamat.2019.08.006
    [59]
    TANG X, JIAN W, HUANG J, et al. Spall damage of a Ta particle-reinforced metallic glass matrix composite under high strain rate loading [J]. Materials Science and Engineering: A, 2018, 711: 284–292. doi: 10.1016/j.msea.2017.11.032
    [60]
    CHEN J, TSCHOPP M A, DONGARE A M. Shock wave propagation and spall failure of nanocrystalline Cu/Ta alloys: effect of Ta in solid-solution [J]. Journal of Applied Physics, 2017, 122(22): 225901. doi: 10.1063/1.5001761
    [61]
    CHEN J, MATHAUDHU S N, THADHANI N, et al. Unraveling the role of interfaces on the spall failure of Cu/Ta multilayered systems [J]. Scientific Reports, 2020, 10(1): 1–15. doi: 10.1038/s41598-019-56847-4
    [62]
    HAN W, CERRETA E, MARA N, et al. Deformation and failure of shocked bulk Cu-Nb nanolaminates [J]. Acta Materialia, 2014, 63: 150–161. doi: 10.1016/j.actamat.2013.10.019
    [63]
    YANG Y, JIANG Z, WANG C, et al. Effects of the phase interface on initial spallation damage nucleation and evolution in dual phase titanium alloy [J]. Materials Science and Engineering: A, 2018, 731: 385–393. doi: 10.1016/j.msea.2018.06.066
    [64]
    YANG Y, WANG H, WANG C, et al. Effects of the phase interface on spallation damage nucleation and evolution in dual-phase steel [J]. Steel Research International, 2020, 91(6): 1900583. doi: 10.1002/srin.201900583
    [65]
    RIVERA-DIAZ-DEL-CASTILLO P, VAN DER ZWAAG S, SIETSMA J. A model for ferrite/pearlite band formation and prevention in steels [J]. Metallurgical and Materials Transactions A, 2004, 35(2): 425–433. doi: 10.1007/s11661-004-0353-8
    [66]
    KANEL G. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1): 173–91.
    [67]
    MEYERS M. Shock waves and high-strain-rate phenomena in metals: concepts and applications [M]. New York: Springer Science & Business Media, 2012.
    [68]
    LUO S N, GERMANN T C, AN Q, et al. Shock-induced spall in copper: the effects of anisotropy, temperature, defects and loading pulse [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2009.
    [69]
    GRAY Ⅲ G T, BOURNE N K, HENRIE B L. On the influence of loading profile upon the tensile failure of stainless steel [J]. Journal of Applied Physics, 2007, 101(9): 093507. doi: 10.1063/1.2720099
    [70]
    CAI Y, WU H A, LUO S N. Spall strength of liquid copper and accuracy of the acoustic method [J]. Journal of Applied Physics, 2017, 121(10): 105901. doi: 10.1063/1.4978251
    [71]
    MOSHE E, ELIEZER S, DEKEL E, et al. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1 [J]. Journal of Applied Physics, 1998, 83(8): 4004–4011. doi: 10.1063/1.367222
    [72]
    JONES D R, FENSIN S J, MARTINEZ D T, et al. Effect of peak stress and tensile strain-rate on spall in tantalum [J]. Journal of Applied Physics, 2018, 124(8): 085901. doi: 10.1063/1.5045045
    [73]
    TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture [J]. International Journal of Fracture Mechanics, 1968, 4(4): 431–437.
    [74]
    HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. doi: 10.1016/j.actamat.2016.12.033
    [75]
    WHITEMAN G, KEIGHTLEY P, MILLETT J. The behaviour of 2169 steel under uniaxial stress and uniaxial strain loading [J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 337–346. doi: 10.1007/s40870-016-0069-z
    [76]
    PAVLENKO A V, MALUGINA S, KAZAKOV D N, et al. Plastic deformation and spall fracture of structural 12Cr18Ni10Ti steel [C]//AIP Conference Proceedings. New York: American Institute of Physics, 2012.
    [77]
    STEVENS A, TULER F. Effect of shock precompression on the dynamic fracture strength of 1020 steel and 6061-T6 aluminum [J]. Journal of Applied Physics, 1971, 42(13): 5665–5670. doi: 10.1063/1.1659997
    [78]
    WANG G. Influence of shock pre-compression stress and tensile strain rate on the spall behaviour of mild steel [J]. Strain, 2011, 47(5): 398–404. doi: 10.1111/j.1475-1305.2009.00700.x
    [79]
    NGUYEN T, LUSCHER D, WILKERSON J. A physics-based model and simple scaling law to predict the pressure dependence of single crystal spall strength [J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103875. doi: 10.1016/j.jmps.2020.103875
    [80]
    WANG Y, HE H, WANG L. Critical damage evolution model for spall failure of ductile metals [J]. Mechanics of Materials, 2013, 56: 131–141. doi: 10.1016/j.mechmat.2012.10.004
    [81]
    ZENG Z H, LI X Z, LI C, et al. Deformation twinning in a mild steel: loading dependence and strengthening [J]. Materials Science and Engineering: A, 2019, 751: 332–339. doi: 10.1016/j.msea.2019.02.079
    [82]
    LI C, ZENG Z H, LI Y, et al. Shock-induced twinning and texture in a mild carbon steel [J]. Materials Science and Engineering: A, 2020, 773: 138832.
    [83]
    CURRAN D, SEAMAN L, SHOCKEY D. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388. doi: 10.1016/0370-1573(87)90049-4
    [84]
    SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
    [85]
    TONG W, RAVICHANDRAN G. Inertial effects on void growth in porous viscoplastic materials [J]. ASME Journal of Applied Mechanics, 1995, 62(3): 633–639. doi: 10.1115/1.2895993
    [86]
    WU X, RAMESH K, WRIGHT T. The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(1): 1–26. doi: 10.1016/S0022-5096(02)00079-0
    [87]
    WILKERSON J, RAMESH K. A dynamic void growth model governed by dislocation kinetics [J]. Journal of the Mechanics and Physics of Solids, 2014, 70: 262–280. doi: 10.1016/j.jmps.2014.05.018
    [88]
    THOMASON P. Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions [J]. Acta Materialia, 1999, 47(13): 3633–3646. doi: 10.1016/S1359-6454(99)00223-2
    [89]
    CHEN D, TAN H, YU Y, et al. A void coalescence-based spall model [J]. International Journal of Impact Engineering, 2006, 32(11): 1752–1767. doi: 10.1016/j.ijimpeng.2005.04.009
    [90]
    白以龙, 柯孚久, 夏蒙棼. 固体中微裂纹系统统计演化的基本描述 [J]. 力学学报, 1991, 23(3): 290–298.

    BAI Y L, KE F J, XIA M F. Formulation of statistical evolution of microcracks in solids [J]. Chinese Journal of Theoretical and Applied Mechani, 1991, 23(3): 290–298.
    [91]
    GURSON A. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and coalescence [D]. Providence, RI: Brown University, 1975.
    [92]
    TVERGAARD V. Material failure by void growth to coalescence [J]. Advances in Applied Mechanics, 1990, 27: 83–151.
    [93]
    BENZERGA A, LEBLOND J. Ductile fracture by void growth to coalescence [J]. Advances in Applied Mechanics, 2010, 44: 169–305.
    [94]
    TANG X C, YAO X H, WILKERSON J W. A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses [J]. International Journal of Plasticity, 2021, 137: 102884. doi: 10.1016/j.ijplas.2020.102884
    [95]
    JIANG M Q, DAI L H. On the origin of shear banding instability in metallic glasses [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1267–1292. doi: 10.1016/j.jmps.2009.04.008
    [96]
    CORTES R. The growth of microvoids under intense dynamic loading [J]. International Journal of Solids and Structures, 1992, 29(11): 1339–1350. doi: 10.1016/0020-7683(92)90082-5
    [97]
    SEAMAN L, CURRAN D R. Inertia and temperature effects in void growth [C]//AIP Conference Proceedings. New York: American  Institute of Physics, 2002, 620: 607–610.
    [98]
    封加波. 金属动态延性破坏的损伤度函数模型[D]. 北京: 北京理工大学, 1992.
    [99]
    王永刚. 延性金属动态拉伸断裂及其临界损伤度研究[D]. 绵阳: 中国工程物理研究院, 2006.
  • Relative Articles

    [1]LI Hongchao, WANG Fuqi, ZHANG Ji, LIANG Rui, WEN Yiming. Sensitivity Analysis and Determination of Some Parameters of the Rock RHT Model[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20240965
    [2]CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, PENG Lei. Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649
    [3]LI Hongwei, WU Yanmeng, WU Lihui, YANG Saiqun, GUAN Yueqiang, HUANG Xinxu, ZHANG Wanlong. Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638
    [4]ZHOU Chaolan, LIU Zhixiang, YANG Xiaocong, LIU Lishun, ZHANG Shuangxia, MA Sizhou. Numerical Simulation on Optimization of Extrusion Blasting Parameters for Residual Ore Recovery[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 035301. doi: 10.11858/gywlxb.20220694
    [5]CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, MENG Jiale, PENG Lei, WU Xiao. Optimization and Experimental Study of Pre-Splitting Blasting Parameters in a Certain Open-Pit Mine[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065301. doi: 10.11858/gywlxb.20230692
    [6]WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815
    [7]YAO Chenhui, YANG Gang, ZHANG Zhe, LI Anqi. Reliability Optimization Design of Anti-Penetration Perforated Armor[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507
    [8]ZHAO Xiaoming, YANG Yumin, JIANG Nan, CAI Zhongwei, OUYANG Song. Optimization of Charging Structure of Surrounding Holes in Smooth Blasting of Deep Diversion Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045301. doi: 10.11858/gywlxb.20220503
    [9]LI Xianglong, YANG Changhui, WANG Jianguo, WANG Zichen, HU Qiwen. Parameter Optimization of Presplitting Blasting Based on Model Test[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025301. doi: 10.11858/gywlxb.20210830
    [10]YUE Xiaoyuan, ZHANG Huisuo, HAN Xuelian, LIU Hongli, WANG Yanjie, LIU Hengzhu, LIU Pengfei, CAO Hongsong. Process of Improved Hot Mandrel for Large Length-Diameter Ratio Warhead Melting Cast[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592
    [11]TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863
    [12]SONG Wei, XIE Dongsheng, HUANG Tiezheng, SUN Tao, LI Haitao, FAN Zhiqiang. De-Icing Power Line by Linear Shaped Explosive Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605
    [13]LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong. Optimum Design of Annular Double Done Shaped Charge Structure[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539
    [14]ZHANG Feng-Guo, WANG Pei, HU Xiao-Mian, SHAO Jian-Li, ZHOU Hong-Qiang, FENG Qi-Jing. Numerical Analysis of High Explosive-Induced Multiple Layers in Sn Metal[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 280-285. doi: 10.11858/gywlxb.2017.03.009
    [15]WANG Hong-Bo, YANG Shi-Quan, XIE Ruo-Ze, QIAN Li-Xin, LU Yong-Gang. Influence of Concrete Target with Pre-Drilled Cavities on the Penetration Performance of a Projectile[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 69-74. doi: 10.11858/gywlxb.2015.01.012
    [16]CHEN Chuang, LI Wei-Bing, WANG Xiao-Ming, LI Wen-Bin, WU Wei. Optimization Design of Precursor K-Charge Structure of Tandem Warhead[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 73-78. doi: 10.11858/gywlxb.2014.01.012
    [17]ZHANG Ruo-Qi, DING Yu-Qing, TANG Wen-Hui, RAN Xian-Wen. The Failure Strength Parameters of HJC and RHT Concrete Constitutive Models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15-22 . doi: 10.11858/gywlxb.2011.01.003
    [18]WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen. Building of a Constitutive Model for Concrete under Dynamic Impact[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 337-344 . doi: 10.11858/gywlxb.2006.04.001
    [19]LI Mao-Sheng, CHEN Dong-Quan. A Constitutive Model for Materials under High-Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24-31 . doi: 10.11858/gywlxb.2001.01.004
    [20]ZHAO Tong-Hu, HAN Li-Shi, HE Zhi. The Rectangular Diffraction of Detonation Wave in the High Explosive RHT-901 and the Insensitive High Explosive IHE-2[J]. Chinese Journal of High Pressure Physics, 1998, 12(4): 264-270 . doi: 10.11858/gywlxb.1998.04.005
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.5 %FULLTEXT: 25.5 %META: 61.6 %META: 61.6 %PDF: 12.9 %PDF: 12.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(4591) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return