Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645
Citation: NIE Shicheng, ZHANG Wei, TIAN Ge, WANG Zhijuan, GAN Wenmei, GAO Hong. Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035901. doi: 10.11858/gywlxb.20200645

Improvement of Emulsification Performance of Quinoa Protein by Ultra-High Pressure Treatment

doi: 10.11858/gywlxb.20200645
  • Received Date: 30 Nov 2020
  • Rev Recd Date: 17 Dec 2020
  • In our study, ultra-high pressure was used to process quinoa protein, and how to exert influence on the emulsification of quinoa protein was investigated in terms of the ultra-high pressure holding pressure and time, and the protein content as well. Via the response surface method, the ultra-high pressure processing were optimized and the best optimal process conditions were obtained. Then the surface properties and structural characteristics of the emulsion protein were analyzed by means of the Fourier infrared spectroscopy, particle size analyzer, X-ray diffraction(XRD) and other characterization methods. The results show that: when the holding pressure stays at 235 MPa for 5.2 min, and the protein content keeps 0.34%, the emulsification index is 119 m2/g; at the same time, the secondary structure of the protein can be seen from the Fourier infrared spectroscopy. There is a decrease in the structure content but increase on both the β-turn structure content and the molecular disorder, and the protein emulsification is improved. Analyzing the modified protein by XRD, it can be seen that the strength is significantly reduced at a peak near 2$\theta $ = 10° and the content of α-helical structure gets reduced. After modification, the particle size of the emulsion protein is reduced, while its emulsification is improved. Thus, it can come to the conclusion that a proper ultra-high pressure treatment can lead to an improvement of the quinoa protein emulsification.

     

  • loading
  • [1]
    ZURITA-SILVA A, FUENTES F, ZAMORA P, et al. Breeding quinoa (Chenopodium quinoa willd.): potential and perspectives [J]. Molecular Breeding, 2014, 34(1): 13–30. doi: 10.1007/s11032-014-0023-5
    [2]
    OSHODI A A, OGUNGBENLE H N, OLADIMEJI M O, et al. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours [J]. International Journal of Food Sciences and Nutrition, 1999, 50(5): 325–331. doi: 10.1080/096374899101058
    [3]
    GALLEGO VILLA D Y, RUSSO L, KERBAB K, et al. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds [J]. Emirates Journal of Food and Agriculture, 2014, 26(7): 609–615. doi: 10.9755/ejfa.v26i7.18187
    [4]
    王黎明, 马宁, 李颂, 等. 藜麦的营养价值及其应用前景 [J]. 食品工业科技, 2014, 35(1): 381–384, 389.

    WANG L M, MA N, LI S, et al. Nutritional properties of quinoa and its application prospects [J]. Science and Technology of Food Industry, 2014, 35(1): 381–384, 389.
    [5]
    KOZIOŁ M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.) [J]. Journal of Food Composition and Analysis, 1992, 5(1): 35–68. doi: 10.1016/0889-1575(92)90006-6
    [6]
    REPO-CARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule) [J]. Food Reviews International, 2003, 19(1/2): 179–189. doi: 10.1081/FRI-120018884
    [7]
    CAPRIOTTI A L, CAVALIERE C, PIOVESANA S, et al. Characterization of quinoa seed proteome combining different protein precipitation techniques: improvement of knowledge of nonmodel plant proteomics [J]. Journal of Separation Science, 2015, 38(6): 1017–1025. doi: 10.1002/jssc.201401319
    [8]
    王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展 [J]. 浙江农林大学学报, 2014, 31(2): 296–301. doi: 10.11833/j.issn.2095-0756.2014.02.020

    WANG C J, ZHAO X W, LU G Q, et al. A review of characteristics and utilization of Chenopodium quinoa [J]. Journal of Zhejiang A & F University, 2014, 31(2): 296–301. doi: 10.11833/j.issn.2095-0756.2014.02.020
    [9]
    HYUN D H, LEE M H, HALLIWELL B, et al. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins [J]. Journal of Neurochemistry, 2003, 86(2): 363–373. doi: 10.1046/j.1471-4159.2003.01841.x
    [10]
    王龙飞, 王新伟, 赵仁勇. 藜麦蛋白的特点、性质及提取的研究进展 [J]. 食品工业, 2017, 38(7): 255–258.

    WANG L F, WANG X W, ZHAO R Y. A review of characteristic, properties and extraction of quinoa protein [J]. The Food Industry, 2017, 38(7): 255–258.
    [11]
    JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions [J]. Journal of Food Engineering, 2008, 86(2): 281–287. doi: 10.1016/j.jfoodeng.2007.10.004
    [12]
    张海芳, 李艳, 韩育梅, 等. 酶法改性对马铃薯渣膳食纤维单糖组分及理化性质的影响 [J]. 食品研究与开发, 2020, 41(1): 60–66. doi: 10.12161/j.issn.1005-6521.2020.01.010

    ZHANG H F, LI Y, HAN Y M, et al. Effects of different enzymatic modifications on monosaccharide composition and physicochemical properties of dietary fiber from potato pulp [J]. Food Research and Development, 2020, 41(1): 60–66. doi: 10.12161/j.issn.1005-6521.2020.01.010
    [13]
    ZHONG Q, JIN M. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide [J]. Journal of Dairy Science, 2008, 91(2): 490–499. doi: 10.3168/jds.2007-0663
    [14]
    OEY I, LILLE M, VAN LOEY A, et al. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review [J]. Trends in Food Science & Technology, 2008, 19(6): 320–328. doi: 10.1016/j.jpgs.2008.04.001
    [15]
    易建勇, 董鹏, 王永涛, 等. 应用SRCD和FTIR分析超高压处理对蘑菇多酚氧化酶二级结构的影响 [J]. 光谱学与光谱分析, 2012, 32(2): 317–323. doi: 10.3964/j.issn.1000-0593(2012)02-0317-07

    YI J Y, DONG P, WANG Y T, et al. Study on the effect of high hydrostatic pressure treatment on the secondary structure of mushroom polyphenoloxidase by SRCD and FTIR [J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 317–323. doi: 10.3964/j.issn.1000-0593(2012)02-0317-07
    [16]
    王硕, 黄薇, 王金荣, 等. 食品非热加工技术——超高压在蛋白质和淀粉改性中的应用 [J]. 中国食品学报, 2015, 15(6): 1–13. doi: 10.16429/j.1009-7848.2015.06.001

    WANG S, HUANG W, WANG J R, et al. Non-thermal processing technologies of food-the application of ultrahigh pressure in protein and starch modification [J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(6): 1–13. doi: 10.16429/j.1009-7848.2015.06.001
    [17]
    刘坚, 江波, 张涛, 等. 超高压对鹰嘴豆分离蛋白功能性质的影响 [J]. 食品与发酵工业, 2006, 32(12): 64–68. doi: 10.3321/j.issn:0253-990X.2006.12.015

    LIU J, JIANG B, ZHANG T, et al. Effect of ultra high pressure on the functional properties of chickpea protein isolate [J]. Food and Fermentation Industries, 2006, 32(12): 64–68. doi: 10.3321/j.issn:0253-990X.2006.12.015
    [18]
    JIANG J, CHEN J, XIONG Y L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes [J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7576–7583. doi: 10.1021/jf901585n
    [19]
    SUREWICZ W K, MANTSCH H H. New insight into protein secondary structure from resolution-enhanced infrared spectra [J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1988, 952: 115–130. doi: 10.1016/0167-4838(88)90107-0
    [20]
    胡淼, 赵城彬, 李杨, 等. 糖基化反应对绿豆分离蛋白空间结构及乳液性质的影响 [J]. 中国食品学报, 2018, 18(11): 50–56.

    HU M, ZHAO C B, LI Y, et al. Effect of glycation reaction on spatial structure conformation and emulsion properties of mung bean protein isolate [J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(11): 50–56.
    [21]
    李仁杰, 廖小军, 胡小松, 等. 超高压对蛋白质的影响 [J]. 高压物理学报, 2014, 28(4): 498–506. doi: 10.11858/gywlxb.2014.04.017

    LI R J, LIAO X J, HU X S, et al. Effects of high hydrostatic pressure on proteins [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 498–506. doi: 10.11858/gywlxb.2014.04.017
    [22]
    李明月, 杜钰, 姚晓玲, 等. 超高压处理对蛋白质功能特性的影响 [J]. 食品科技, 2018, 43(1): 50–54.

    LI M Y, DU Y, YAO X L, et al. Effects of ultrahigh pressure processing on protein functional properties [J]. Food Science and Technology, 2018, 43(1): 50–54.
    [23]
    王岁楼, 张国超. 超高压对小麦蛋白乳化性和乳化稳定性的影响 [J]. 食品与机械, 2008, 24(2): 9–11.

    WANG S L, ZHANG G C. Effects of ultra-high pressure on the emulsification activity and stability of wheat protein [J]. Food & Machinery, 2008, 24(2): 9–11.
    [24]
    袁道强, 郭书爱. 超高压对大豆分离蛋白乳化性影响 [J]. 粮食与油脂, 2009(12): 23–25. doi: 10.3969/j.issn.1008-9578.2009.12.008

    YUAN D Q, GUO S A. Effects of ultra-high pressure on emulsifying properties of soy protein isolated [J]. Journal of Cereals & Oils, 2009(12): 23–25. doi: 10.3969/j.issn.1008-9578.2009.12.008
    [25]
    纵伟, 陈怡平. 超高压对花生分离蛋白乳化性的影响 [J]. 中国油脂, 2008, 33(3): 26–28. doi: 10.3321/j.issn:1003-7969.2008.03.007

    ZONG W, CHEN Y P. Effect of ultra high pressure on the emulsifying ability of peanut protein isolate [J]. China Oils and Fats, 2008, 33(3): 26–28. doi: 10.3321/j.issn:1003-7969.2008.03.007
    [26]
    FLOURY J, DESRUMAUX A, LEGRAND J. Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions [J]. Journal of Food Science, 2002, 67(9): 3388–3395. doi: 10.1111/j.1365-2621.2002.tb09595.x
    [27]
    HASSAN POUR A, SAFIEDDIN ARDEBILI S M, SHEIKHDAVOODI M J. Multi-objective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method [J]. Environmental Science and Pollution Research, 2018, 25(35): 35429–35439. doi: 10.1007/s11356-018-3459-z
    [28]
    刘龙. 牦牛乳清蛋白泡沫分离及功能特性改善研究[D]. 青海: 青海师范大学, 2018.
    [29]
    汪超, 李阜烁, 林文珍, 等. 响应面法优化酪蛋白源多肽制备工艺 [J]. 中国乳品工业, 2018, 46(12): 4–8. doi: 10.3969/j.issn.1001-2230.2018.12.001

    WANG C, LI F S, LIN W Z, et al. Optimization of preparing casein derived peptides by response surface methodology [J]. China Dairy Industry, 2018, 46(12): 4–8. doi: 10.3969/j.issn.1001-2230.2018.12.001
    [30]
    BARTH A. Infrared spectroscopy of proteins [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(9): 1073–1101. doi: 10.1016/j.bbabio.2007.06.004
    [31]
    CHOI S M, MA C Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy [J]. Food Chemistry, 2007, 102(1): 150–160. doi: 10.1016/j.foodchem.2006.05.011
    [32]
    赵贵川. 超高压处理对米渣蛋白水解物抗氧化活性的影响[D]. 长沙: 中南林业科技大学, 2016.
    [33]
    李超, 蒲彪, 罗松明, 等. pH和NaCl浓度对花椒籽仁分离蛋白乳化性的影响 [J]. 食品与发酵工业, 2017, 43(6): 92–97. doi: 10.13995/j.cnki.11-1802/ts.201706015

    LI C, PU B, LUO S M, et al. Emulsifing properties of Zanthoxylum bungeanum Maxim seed kernel protein isolate: effect of pH and NaCl concentration [J]. Food and Fermentation Industries, 2017, 43(6): 92–97. doi: 10.13995/j.cnki.11-1802/ts.201706015
    [34]
    BENDIT E G. A quantitative X-ray diffraction study of the α-β transformation in wool keratin [J]. Textile Research Journal, 1960, 30(8): 547–555. doi: 10.1177/004051756003000801
    [35]
    ZHAO X Y, ZHU H T, ZHANG B W, et al. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles [J]. Journal of the American Oil Chemists’ Society, 2015, 92(7): 975–983. doi: 10.1007/s11746-015-2657-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(4155) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return