Volume 35 Issue 3
Jun 2021
Turn off MathJax
Article Contents
LEI Jingfa, XUAN Yan, LIU Tao, JIANG Xiquan, DUAN Feiya, WEI Zhan. Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034101. doi: 10.11858/gywlxb.20200627
Citation: LEI Jingfa, XUAN Yan, LIU Tao, JIANG Xiquan, DUAN Feiya, WEI Zhan. Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034101. doi: 10.11858/gywlxb.20200627

Experiments of Dynamic Tensile Properties of a Polyvinyl Chloride Elastomer

doi: 10.11858/gywlxb.20200627
  • Received Date: 15 Oct 2020
  • Rev Recd Date: 05 Nov 2020
  • To study the static and dynamic tensile properties of soft polymer materials, experiments of a polyvinyl chloride (PVC) elastomer were carried out using the Instron-5943 universal testing machine and an improved split Hopkinson tensile bar (SHTB) experimental device. Stress-strain curves of the material under the strain rates of 0.1 s−1 and 400−1 850 s−1 were obtained. During the dynamic tensile experiment, the combination of waveform analysis and high-speed camera were adopted to optimize the connection mode and adhesive of the specimen. The pulse shaper was used to delay the rising edge of the incident wave to realize constant strain rate loading. The gap between the incident bar and the absorption bar was adjusted to deal with the baseline deviation of incident wave. Results showed that the PVC elastomer shows obvious linear elastic under quasi-static (0.1 s−1) tension, and certain viscosity under dynamic (400−1 850 s−1) tension. The non-linear viscoelastic Zhu-Wang-Tang (ZWT) model was used to characterize the viscoelastic response of the PVC elastomer, and the results of experiment and simulation were in good agreement.

     

  • loading
  • [1]
    MULLIKEN A D, BOYCE M C. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates [J]. International Journal of Solids and Structures, 2006, 43: 1331–1356. doi: 10.1016/j.ijsolstr.2005.04.016
    [2]
    HANG C, SU E D, YAN Q, et al. Experimental investigation on dynamic characteristics of two kinds of rubber engine vibration isolator [J]. Journal of Experimental Mechanics, 2019, 34(1): 157–165.
    [3]
    WANG W Q, LI W R, LIANG P, et al. Preparation of car crash dummy skin and its mechanical performance test [J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 192–198.
    [4]
    DU B X, SUN X X, XIAO M, et al. Advances in thermal performance of polymer-based composites [J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3149–3159.
    [5]
    JHA N K, NACKENHORST U, PAWAR V S, et al. On the constitutive modelling of fatigue damage in rubber-like materials [J]. International Journal of Solids and Structures, 2018, 159: 77–89.
    [6]
    李晓明, 李志海. PVC屋面系统在海航新华航空基地维修机库中的应用 [J]. 中国建筑防水, 2011(7): 7–9, 13. doi: 10.3969/j.issn.1007-497X.2011.07.002

    LI X M, LI Z H. The application of PVC roofing system in the maintenance hangar of HNA Xinhua Aviation Base [J]. China Building Waterproofing, 2011(7): 7–9, 13. doi: 10.3969/j.issn.1007-497X.2011.07.002
    [7]
    张龙辉, 张晓晴, 姚小虎, 等. 高应变率下航空透明聚氨酯的动态本构模型 [J]. 爆炸与冲击, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06

    ZHANG L H, ZHANG X Q, YAO X H, et al. Dynamic constitutive model of aviation transparent polyurethane under high strain rate [J]. Explosion and Shock Waves, 2015, 35(1): 51–56. doi: 10.11883/1001-1455(2015)01-0051-06
    [8]
    孙文旭, 罗智恒, 唐明峰, 等. PBX-1炸药的力学性能和本构关系 [J]. 爆炸与冲击, 2019, 39(7): 072301.

    SUN W X, LUO Z H, TANG M F, et al. Mechanical properties and constitutive relationship of PBX-1 explosive [J]. Explosion and Shock Waves, 2019, 39(7): 072301.
    [9]
    周永康, 陈力, 崔世堂. 一种新型软材料动态直接拉伸实验技术 [J]. 振动与冲击, 2017, 36(22): 144–148, 224.

    ZHOU Y K, CHEN L, CUI S T. A new type of soft material dynamic direct tensile experiment technology [J]. Journal of Vibration and Shock, 2017, 36(22): 144–148, 224.
    [10]
    黄微波,宋奕龙,马明亮,等. 喷涂聚脲弹性体抗爆抗冲击性能研究进展 [J]. 工程塑料应用, 2019, 47(1): 148–153.

    HUANG W B, SONG Y L, MA M L, et al. Research progress on anti-explosion and impact resistance of sprayed polyurea elastomer [J]. Application of Engineering Plastics, 2019, 47(1): 148–153.
    [11]
    ZHONG T, ZHONG Z Y, HUANG J W. Rate-dependent phase transition of high density polyethylene [J]. Materialia, 2019, 6: 100274. doi: 10.1016/j.mtla.2019.100274
    [12]
    LIM J, HONG J, CHEN W W, et al. Mechanical response of pig skin under dynamic tensile loading [J]. International Journal of Impact Engineering, 2011, 38(2/3): 130–135.
    [13]
    FAN J T, WEERHEIJM J, SLUYS L J. Glass interface effect on high-strain-rate tensile response of a soft polyurethane elastomeric polymer material [J]. Composites Science and Technology, 2015, 118: 55–62. doi: 10.1016/j.compscitech.2015.08.007
    [14]
    GUO L M, LV Y N, DENG Z F. Tension testing of silicone rubber at high strain rates [J]. Polymer Testing, 2016, 50: 270–275. doi: 10.1016/j.polymertesting.2016.01.021
    [15]
    WANG H, DENG X M, WU H J, et al. Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling [J]. Defence Technology, 2019, 15(6): 875–884. doi: 10.1016/j.dt.2019.04.016
    [16]
    LIAO Z S, YAO X H, ZHANG L H. Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates [J]. International Journal of Impact Engineering, 2019, 129: 152–167. doi: 10.1016/j.ijimpeng.2019.03.005
    [17]
    FAN J T, WEERHEIJM J, SLUYS L J. High-strain-rate tensile mechanical response of a polyurethane elastomeric material [J]. Polymer, 2015, 65: 72–80. doi: 10.1016/j.polymer.2015.03.046
    [18]
    CAO K, WANG Y, WANG Y. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates [J]. International Journal of Solids and Structures, 2014, 51: 2539–2548. doi: 10.1016/j.ijsolstr.2014.03.026
    [19]
    ZHANG L H, YAO X H, ZANG S G, et al. Temperature and strain rate dependent tensile behavior of a transparent polyurethane interlayer [J]. Materials & Design, 2015, 65: 1181–1188.
    [20]
    朱天戈, 李晓林, 杨化浩, 等. 聚丙烯树脂在高拉伸应变速率下的拉伸性能 [J]. 塑料, 2018, 47(2): 114–118.

    ZHU T G, LI X L, YANG H H, et al. Tensile properties of polypropylene resin at high tensile strain rate [J]. Plastics, 2018, 47(2): 114–118.
    [21]
    中橡集团沈阳橡胶研究设计院. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528–2009 [S]. 北京: 中国标准出版社, 2009.
    [22]
    SALEH M, KARIEM M M, LUZINA V, et al. High strain rate deformation of ARMOX 500T and effects on texture development using neutron diffraction techniques and SHPB testing [J]. Materials Science and Engineering: A, 2018, 709: 30–39. doi: 10.1016/j.msea.2017.09.022
    [23]
    雷经发, 许孟, 刘涛, 等. 聚氯乙烯弹性体静动态力学性能及本构模型 [J]. 爆炸与冲击, 2020, 40(10): 103103.

    LEI J F, XU M, LIU T, et al. Static and dynamic mechanical properties and constitutive model of PVC elastomer [J]. Explosion and Shock Waves, 2020, 40(10): 103103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views(3800) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return