Volume 34 Issue 6
Nov 2020
Turn off MathJax
Article Contents
ZHOU Xiaoling, CHEN Bin. Plastic Deformation and Size Strengthening of Nanometals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 060101. doi: 10.11858/gywlxb.20200625
Citation: ZHOU Xiaoling, CHEN Bin. Plastic Deformation and Size Strengthening of Nanometals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 060101. doi: 10.11858/gywlxb.20200625

Plastic Deformation and Size Strengthening of Nanometals

doi: 10.11858/gywlxb.20200625
  • Received Date: 12 Oct 2020
  • Rev Recd Date: 10 Nov 2020
  • High pressure techniques have been introduced to nanomaterials research for about three decades. Most of the studies, especially in the earlier time, were mainly X-ray diffraction (XRD), Raman and infrared spectroscopy investigations on the structural transition and equation of state. In recent years, we extended the explorations for the plastic deformation of nanomaterials by employing radial diamond-anvil cell XRD and transmission electron microscopy (TEM). We have successfully probed the dislocation activities in 3 nm nanocrystals, but also seen that partial dislocations and deformation twinning dominate the plastic deformation below 20 nm. We have observed the reversal in the grain size dependence of grain rotation in nickel, and have found that the strengthening of nickel nanocrystals could be extended down to 3 nm. Compared with the traditional techniques, high pressure techniques are more advantageous in applying mechanical load to nanosized samples and characterizing the structural and mechanical properties in situ or ex situ, which could help to unveil the mysteries of mechanics at the nanoscale and bridge the knowledge on the material mechanics at the multiscale. With these knowledges, more advanced materials could be fabricated for wider and specialized applications.

     

  • loading
  • [1]
    YAMAKOV V, WOLF D, SALAZAR M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2001, 49(14): 2713–2722. doi: 10.1016/S1359-6454(01)00167-7
    [2]
    VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
    [3]
    KUMAR K S, SURESH S, CHISHOLM M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51(2): 387–405. doi: 10.1016/s1359-6454(02)00421-4
    [4]
    CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211
    [5]
    HUGHES D A, HANSEN N. Exploring the limit of dislocation based plasticity in nanostructured metals [J]. Physical Review Letters, 2014, 112(13): 135504. doi: 10.1103/PhysRevLett.112.135504
    [6]
    CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727
    [7]
    YAMAKOV V, WOLF D, PHILLPOT S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2002, 50(20): 5005–5020. doi: 10.1016/S1359-6454(02)00318-X
    [8]
    SHAN Z W, STACH E A, WIEZOREK J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305(5684): 654–657. doi: 10.1126/science.1098741
    [9]
    SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
    [10]
    SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636
    [11]
    VAN SWYGENHOVEN H, DERLET P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Physical Review B, 2001, 64(22): 224105. doi: 10.1103/PhysRevB.64.224105
    [12]
    WANG L H, TENG J, LIU P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nature Communications, 2014, 5: 4402. doi: 10.1038/ncomms5402
    [13]
    ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101
    [14]
    ZHOU X L, TAMURA N, MI Z Y, et al. Measuring grain rotation at the nanoscale [J]. High Pressure Research, 2017, 37(3): 287–295. doi: 10.1080/08957959.2017.1334775
    [15]
    THOMPSON A W. Effect of grain size on work hardening in nickel [J]. Acta Metallurgica, 1977, 25(1): 83–86. doi: 10.1016/0001-6160(77)90249-8
    [16]
    NORFLEET D M, DIMIDUK D M, POLASIK S J, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals [J]. Acta Materialia, 2008, 56(13): 2988–3001. doi: 10.1016/j.actamat.2008.02.046
    [17]
    LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.1092905
    [18]
    LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. doi: 10.1126/science.1159610
    [19]
    CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6
    [20]
    CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353
    [21]
    LU L, CHEN X, HUANG X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323(5914): 607–610. doi: 10.1126/science.1167641
    [22]
    KNAPP J A, FOLLSTAEDT D M. Hall-Petch relationship in pulsed-laser deposited nickel films [J]. Journal of Materials Research, 2004, 19(1): 218–227. doi: 10.1557/jmr.2004.19.1.218
    [23]
    CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022
    [24]
    WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A
    [25]
    SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X
    [26]
    MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003
    [27]
    KOCH C C, NARAYAN J. The inverse Hall-Petch effect: fact or artifact? [C]//Materials Research Society Symposium Proceeding. Cambridge: Cambridge University Press, 2001, 634: B5.1.1.
    [28]
    DAO M, LU L, ASARO R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Materialia, 2007, 55(12): 4041–4065. doi: 10.1016/j.actamat.2007.01.038
    [29]
    LEE PENN R, BANFIELD J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969–971. doi: 10.1126/science.281.5379.969
    [30]
    BANFIELD J F, WELCH S A, ZHANG H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science, 2000, 289(5480): 751–754. doi: 10.1126/science.289.5480.751
    [31]
    MARGULIES L, WINTHER G, POULSEN H F. In situ measurement of grain rotation during deformation of polycrystals [J]. Science, 2001, 291(5512): 2392–2394. doi: 10.1126/science.1057956
    [32]
    UPMANYU M, SROLOVITZ D J, LOBKOVSKY A E, et al. Simultaneous grain boundary migration and grain rotation [J]. Acta Materialia, 2006, 54(7): 1707–1719. doi: 10.1016/j.actamat.2005.11.036
    [33]
    YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395
    [34]
    ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
    [35]
    MERKEL S, WENK H R, SHU J F, et al. Deformation of polycrystalline MgO at pressures of the lower mantle [J]. Journal of Geophysical Research, 2002, 107(B11): 2271. doi: 10.1029/2001jb000920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(7214) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return