Citation: | ZHOU Xiaoling, CHEN Bin. Plastic Deformation and Size Strengthening of Nanometals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 060101. doi: 10.11858/gywlxb.20200625 |
[1] |
YAMAKOV V, WOLF D, SALAZAR M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2001, 49(14): 2713–2722. doi: 10.1016/S1359-6454(01)00167-7
|
[2] |
VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
|
[3] |
KUMAR K S, SURESH S, CHISHOLM M F, et al. Deformation of electrodeposited nanocrystalline nickel [J]. Acta Materialia, 2003, 51(2): 387–405. doi: 10.1016/s1359-6454(02)00421-4
|
[4] |
CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211
|
[5] |
HUGHES D A, HANSEN N. Exploring the limit of dislocation based plasticity in nanostructured metals [J]. Physical Review Letters, 2014, 112(13): 135504. doi: 10.1103/PhysRevLett.112.135504
|
[6] |
CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727
|
[7] |
YAMAKOV V, WOLF D, PHILLPOT S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Materialia, 2002, 50(20): 5005–5020. doi: 10.1016/S1359-6454(02)00318-X
|
[8] |
SHAN Z W, STACH E A, WIEZOREK J M K, et al. Grain boundary-mediated plasticity in nanocrystalline nickel [J]. Science, 2004, 305(5684): 654–657. doi: 10.1126/science.1098741
|
[9] |
SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
|
[10] |
SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636
|
[11] |
VAN SWYGENHOVEN H, DERLET P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Physical Review B, 2001, 64(22): 224105. doi: 10.1103/PhysRevB.64.224105
|
[12] |
WANG L H, TENG J, LIU P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J]. Nature Communications, 2014, 5: 4402. doi: 10.1038/ncomms5402
|
[13] |
ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101
|
[14] |
ZHOU X L, TAMURA N, MI Z Y, et al. Measuring grain rotation at the nanoscale [J]. High Pressure Research, 2017, 37(3): 287–295. doi: 10.1080/08957959.2017.1334775
|
[15] |
THOMPSON A W. Effect of grain size on work hardening in nickel [J]. Acta Metallurgica, 1977, 25(1): 83–86. doi: 10.1016/0001-6160(77)90249-8
|
[16] |
NORFLEET D M, DIMIDUK D M, POLASIK S J, et al. Dislocation structures and their relationship to strength in deformed nickel microcrystals [J]. Acta Materialia, 2008, 56(13): 2988–3001. doi: 10.1016/j.actamat.2008.02.046
|
[17] |
LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.1092905
|
[18] |
LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. doi: 10.1126/science.1159610
|
[19] |
CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6
|
[20] |
CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353
|
[21] |
LU L, CHEN X, HUANG X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323(5914): 607–610. doi: 10.1126/science.1167641
|
[22] |
KNAPP J A, FOLLSTAEDT D M. Hall-Petch relationship in pulsed-laser deposited nickel films [J]. Journal of Materials Research, 2004, 19(1): 218–227. doi: 10.1557/jmr.2004.19.1.218
|
[23] |
CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022
|
[24] |
WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A
|
[25] |
SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X
|
[26] |
MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003
|
[27] |
KOCH C C, NARAYAN J. The inverse Hall-Petch effect: fact or artifact? [C]//Materials Research Society Symposium Proceeding. Cambridge: Cambridge University Press, 2001, 634: B5.1.1.
|
[28] |
DAO M, LU L, ASARO R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Materialia, 2007, 55(12): 4041–4065. doi: 10.1016/j.actamat.2007.01.038
|
[29] |
LEE PENN R, BANFIELD J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals [J]. Science, 1998, 281(5379): 969–971. doi: 10.1126/science.281.5379.969
|
[30] |
BANFIELD J F, WELCH S A, ZHANG H Z, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science, 2000, 289(5480): 751–754. doi: 10.1126/science.289.5480.751
|
[31] |
MARGULIES L, WINTHER G, POULSEN H F. In situ measurement of grain rotation during deformation of polycrystals [J]. Science, 2001, 291(5512): 2392–2394. doi: 10.1126/science.1057956
|
[32] |
UPMANYU M, SROLOVITZ D J, LOBKOVSKY A E, et al. Simultaneous grain boundary migration and grain rotation [J]. Acta Materialia, 2006, 54(7): 1707–1719. doi: 10.1016/j.actamat.2005.11.036
|
[33] |
YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395
|
[34] |
ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
|
[35] |
MERKEL S, WENK H R, SHU J F, et al. Deformation of polycrystalline MgO at pressures of the lower mantle [J]. Journal of Geophysical Research, 2002, 107(B11): 2271. doi: 10.1029/2001jb000920
|