Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
WANG Guilin, OUYANG Xiaotian, ZHAI Jun, SUN Fan. Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616
Citation: WANG Guilin, OUYANG Xiaotian, ZHAI Jun, SUN Fan. Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015202. doi: 10.11858/gywlxb.20200616

Ground Response Law of Methane Explosion in Shallow Buried Three-Cabin Pipe Gallery

doi: 10.11858/gywlxb.20200616
  • Received Date: 21 Sep 2020
  • Rev Recd Date: 15 Oct 2020
  • Explosion venting accidents in underground comprehensive pipe corridors occur from time to time, causing huge losses to ground personnel and property. Based on a pilot project of an underground comprehensive pipe gallery in Chongqing and the material point method, a high-energy combustion model is used to simulate the process of leaking methane gas explosive’s impact on the structure and surrounding rock of the pipe gallery. Through the simulation, the response characteristics of ground pressure and displacement are studied. The results show that: under the effect of explosion, secondary stress waves caused by reflection and refraction of the contact surface will appear in the pipe gallery and surrounding rock. In the transverse direction, the amplitude of the secondary wave increases with the increase of the horizontal distance from the initiation point, while that generated in the longitudinal direction keeps smaller, and the change remains small with the increasing distance. The explosion caused the overall ground subsidence, but the ground bulged near the center of the detonation point. This bulge was composed of a violent bulge formed by the pipe gallery lining broken and gas directly impacting the rock and soil, and a slight bulge formed by the overall vibration of the pipe gallery.

     

  • loading
  • [1]
    张越. 高雄前镇区多条街道发生燃气爆炸, 消防车被炸毁[N/OL]. [2014–08–01]. http://www.chinanews.com/tp/hd2011/2014/08-01/384708.shtml.

    ZHANG Y. A gas explosion occurred in several streets in the former town of Kaohsiung, and fire trucks were blown up [N/OL]. [2014–08–01]. http://www.chinanews.com/tp/hd2011/2014/08-01/384708.shtml.
    [2]
    王玉琪. 地下综合管廊内燃气泄露及爆炸的数值研究[D]. 北京: 北京建筑大学, 2019.

    WANG Y Q. Numerical research on gas leakage and explosion in underground utility tunnel [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
    [3]
    杨炀. 城市地下综合管廊燃气爆炸防护措施设计研究[D]. 石家庄: 石家庄铁道大学, 2019.

    YANG Y. Design and research on gas explosion protection measures for urban underground integrated pipe gallery [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
    [4]
    曲树盛, 李忠献. 地铁车站内爆炸波的传播规律与超压荷载 [J]. 工程力学, 2010, 27(9): 240–247.

    QU S S, LI Z X. Propagation law and overpressure load of blast wave inside subway station [J]. Engineering Mechanics, 2010, 27(9): 240–247.
    [5]
    廖维张, 杜修力. 爆炸波在地铁车站中的传播规律研究 [J]. 防灾减灾工程学报, 2010, 30(5): 538–543.

    LIAO W Z, DU X L. Study on propagation regularity of blast wave in subway station [J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5): 538–543.
    [6]
    廖维张, 杜修力. 内部爆炸作用下地铁车站的动力响应分析 [J]. 地下空间与工程学报, 2010, 6(5): 980–985.

    LIAO W Z, DU X L. Dynamic responses of subway station under the internal blast loads [J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 980–985.
    [7]
    田力, 高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究 [J]. 工程力学, 2011, 28(11): 114–123.

    TIAN L, GAO F H. Dynamic response of the multi-storey building subjected to blast loading in underground tunnel [J]. Engineering Mechanics, 2011, 28(11): 114–123.
    [8]
    张雄, 廉艳平, 刘岩, 等. 物质点法[M]. 北京: 清华大学出版社, 2013: 7, 31–32.

    ZHANG X, LIAN Y P, LIU Y, et al. Material point method [M]. Beijing: Tsinghua University Press, 2013: 7, 31–32.
    [9]
    陈卫东, 杨文淼, 张帆. 基于物质点法的水下爆炸冲击波数值模拟 [J]. 高压物理学报, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004

    CHEN W D, YANG W M, ZHANG F. Material point method for numerical simulation of underwater explosion blast wave [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 813–820. doi: 10.11858/gywlxb.2013.06.004
    [10]
    王宇新, 陈震, 张洪武, 等. 多层抗爆结构冲击响应无网格MPM法分析 [J]. 工程力学, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032

    WANG Y X, CHEN Z, ZHANG H W, et al. Response of multi-layered structure due to impact load using material point method [J]. Engineering Mechanics, 2007, 24(12): 186–192. doi: 10.3969/j.issn.1000-4750.2007.12.032
    [11]
    王宇新, 陈震, 孙明, 等. 多相介质爆炸冲击响应物质点法数值模拟 [J]. 爆炸与冲击, 2008, 28(2): 154–160. doi: 10.3321/j.issn:1001-1455.2008.02.010

    WANG Y X, CHEN Z, SUN M, et al. Simulation of explosion and shock involving multiple materials based on the material point method [J]. Explosion and Shock Waves, 2008, 28(2): 154–160. doi: 10.3321/j.issn:1001-1455.2008.02.010
    [12]
    缪玉松, 李晓杰, 王宇新, 等. 物质点法在爆轰波碰撞炸药猛度试验中应用 [J]. 大连理工大学学报, 2017, 57(3): 227–232. doi: 10.7511/dllgxb201703002

    MIAO Y S, LI X J, WANG Y X, et al. Application of material point method to explosive brisance tests with detonation wave collision [J]. Journal of Dalian University of Technology, 2017, 57(3): 227–232. doi: 10.7511/dllgxb201703002
    [13]
    张芮瑜, 孙玉进, 宋二祥. 强夯的物质点法模拟及其能量转化规律分析 [J]. 岩土工程学报, 2019, 41(7): 1208–1216.

    ZHANG R Y, SUN Y J, SONG E X. Simulation of dynamic compaction using material point method and analysis of its energy conversion law [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1208–1216.
    [14]
    董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟 [J]. 海洋工程, 2019, 37(5): 141–147.

    DONG Y K, MA J J, WANG D, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141–147.
    [15]
    BARDENHAGEN S G, BRACKBILL J U, SULSKY D. The material-point method for granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 529–541.
    [16]
    VONNEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks [J]. Journal of Applied Physics, 1950, 21(3): 232–237. doi: 10.1063/1.1699639
    [17]
    ZHU Y F, WANG D M, SHAO Z L, et al. Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels [J]. Process Safety and Environmental Protection, 2020, 135: 101–112. doi: 10.1016/j.psep.2019.12.022
    [18]
    曹祝. 气相爆炸冲击问题的物质点法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    CAO Z. Research on material point method for gas explosion shock problems [D]. Harbin: Harbin Engineering University, 2018.
    [19]
    XU J D, XU S L, ZHANG Y L, et al. Study on the development of the medium-scale gas explosion integrated testing system [J]. Procedia Engineering, 2011, 26: 1305–1313. doi: 10.1016/j.proeng.2011.11.2305
    [20]
    QU M Z. Numerical study on shock wave propagation with obstacles during methane explosion [J]. Applied Mechanics and Materials, 2010, 33(9): 114–118.
    [21]
    ZHANG S H, ZHANG Q. Effect of vent size on vented hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2018, 43(37): 17788–17799. doi: 10.1016/j.ijhydene.2018.07.194
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(4423) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return